Zobrazit minimální záznam

dc.contributor.authorDinh, Nghia
dc.contributor.authorOgiela, Lidia Dominika
dc.contributor.authorKiet, Tran-Trung
dc.contributor.authorTuan, Le-Viet
dc.contributor.authorHoang, Vinh Truong
dc.date.accessioned2025-01-22T06:24:17Z
dc.date.available2025-01-22T06:24:17Z
dc.date.issued2024
dc.identifier.citationIEEE Access. 2024, vol. 12, p. 47190-47209.cs
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/10084/155695
dc.description.abstractCAPTCHA (Completely Automated Public Turing Test to Tell Computers and Humans Apart) has long been employed to combat automated bots. It accomplishes this by utilizing distortion techniques and cognitive characteristics. When it comes to countering security attacks, cognitive CAPTCHA methods have proven to be more effective than other approaches. The advancement of eye-tracking technology has greatly improved human-computer interaction (HCI), enabling users to engage with computers without physical contact. This technology is widely used for studying attention, cognitive processes, and performance. In this specific research, we conducted eye-tracking experiments on participants to investigate how their visual behavior changes as the complexity of cognitive CAPTCHAs varies. By analyzing the distribution of eye gaze on each level of CAPTCHA, we can assess users’ visual behavior based on eye movement performance and process metrics. The data collected is then employed in Machine Learning (ML) algorithms to categorize and examine the relative importance of these factors in predicting performance. This study highlights the potential to enhance any cognitive CAPTCHA model by gaining insights into the underlying cognitive processes.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Accesscs
dc.relation.urihttps://doi.org/10.1109/ACCESS.2024.3373542cs
dc.rights© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectcognitivecs
dc.subjectsecuritycs
dc.subjectCAPTCHAcs
dc.subjecteye trackingcs
dc.subjectmachine learningcs
dc.titleA comprehensive analysis of cognitive CAPTCHAs through eye trackingcs
dc.typearticlecs
dc.identifier.doi10.1109/ACCESS.2024.3373542
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume12cs
dc.description.lastpage47209cs
dc.description.firstpage47190cs
dc.identifier.wos001197767000001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.