Zobrazit minimální záznam

dc.contributor.authorKovář, Petr
dc.contributor.authorKrbeček, Matěj
dc.date.accessioned2025-01-22T12:39:50Z
dc.date.available2025-01-22T12:39:50Z
dc.date.issued2024
dc.identifier.citationElectronic Journal of Graph Theory and Applications. 2024, vol. 12, issue 1, p. 35-41.cs
dc.identifier.issn2338-2287
dc.identifier.urihttp://hdl.handle.net/10084/155701
dc.description.abstractLet G be a graph with n vertices. By N(v) we denote the set of all vertices adjacent to v. A bijection f : V(G) -> {1, 2, ... , n} is a distance magic labeling of G if there exists an integer k such that the sum of labels of all vertices adjacent to v is k for all vertices v in V(G). A graph which admits a distance magic labeling is a distance magic graph. In this paper, we completely characterize all orders for which a 14 -regular distance magic graph exists. Hereby we extended similar results on 2-, 4-, 6-, 8-, 10-, and 12 -regular distance magic graphs.cs
dc.language.isoencs
dc.publisherInstitut Teknologi Bandungcs
dc.relation.ispartofseriesElectronic Journal of Graph Theory and Applicationscs
dc.relation.urihttps://dx.doi.org/10.5614/ejgta.2024.12.1.4cs
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/cs
dc.subjectgraph labelingcs
dc.subjectdistance magic labelingcs
dc.subject1-VMV labelingcs
dc.titleOn 14-regular distance magic graphscs
dc.typearticlecs
dc.identifier.doi10.5614/ejgta.2024.12.1.4
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume12cs
dc.description.issue1cs
dc.description.lastpage41cs
dc.description.firstpage35cs
dc.identifier.wos001217810700001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by-sa/4.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by-sa/4.0/