dc.contributor.author | Kovář, Petr | |
dc.contributor.author | Krbeček, Matěj | |
dc.date.accessioned | 2025-01-22T12:39:50Z | |
dc.date.available | 2025-01-22T12:39:50Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Electronic Journal of Graph Theory and Applications. 2024, vol. 12, issue 1, p. 35-41. | cs |
dc.identifier.issn | 2338-2287 | |
dc.identifier.uri | http://hdl.handle.net/10084/155701 | |
dc.description.abstract | Let G be a graph with n vertices. By N(v) we denote the set of all vertices adjacent to v. A bijection f : V(G) -> {1, 2, ... , n} is a distance magic labeling of G if there exists an integer k such that the sum of labels of all vertices adjacent to v is k for all vertices v in V(G). A graph which admits a distance magic labeling is a distance magic graph. In this paper, we completely characterize all orders for which a 14 -regular distance magic graph exists. Hereby we extended similar results on 2-, 4-, 6-, 8-, 10-, and 12 -regular distance magic graphs. | cs |
dc.language.iso | en | cs |
dc.publisher | Institut Teknologi Bandung | cs |
dc.relation.ispartofseries | Electronic Journal of Graph Theory and Applications | cs |
dc.relation.uri | https://dx.doi.org/10.5614/ejgta.2024.12.1.4 | cs |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | cs |
dc.subject | graph labeling | cs |
dc.subject | distance magic labeling | cs |
dc.subject | 1-VMV labeling | cs |
dc.title | On 14-regular distance magic graphs | cs |
dc.type | article | cs |
dc.identifier.doi | 10.5614/ejgta.2024.12.1.4 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 12 | cs |
dc.description.issue | 1 | cs |
dc.description.lastpage | 41 | cs |
dc.description.firstpage | 35 | cs |
dc.identifier.wos | 001217810700001 | |