Zobrazit minimální záznam

dc.contributor.authorPrauzek, Michal
dc.contributor.authorKrömer, Pavel
dc.contributor.authorMikuš, Miroslav
dc.contributor.authorKonečný, Jaromír
dc.date.accessioned2025-01-31T11:44:14Z
dc.date.available2025-01-31T11:44:14Z
dc.date.issued2024
dc.identifier.citationInternet of Things. 2024, vol. 26, art. no. 101197.cs
dc.identifier.issn2543-1536
dc.identifier.issn2542-6605
dc.identifier.urihttp://hdl.handle.net/10084/155725
dc.description.abstractThis study explores the integration of genetic programming (GP) and fuzzy logic to enhance control strategies for Internet of Things (IoT) nodes across varied locations. It is introduced a novel methodology for designing a fuzzy-based energy management controller that autonomously determines the most suitable controller structure and inputs. This approach is evaluated using a solar harvesting IoT model that leverages historical solar irradiance data, highlighting the methodology’s potential for diverse geographical applications and compatibility with low-performance microcontrollers. The findings demonstrate that the integration of GP with designed fitness function enables the dynamic learning and adaptation of control strategies, optimizing system behavior based on historical data. The experimental model showcases an ability to efficiently use historical datasets to derive optimal control strategies, with the fitness metric indicating consistent improvement throughout the learning phase. The results indicate that useful control strategies learned at a certain location may outperform a locally-trained control strategies and can be successfully re-applied in other locations.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesInternet of Thingscs
dc.relation.urihttps://doi.org/10.1016/j.iot.2024.101197cs
dc.rights© 2024 The Author(s). Published by Elsevier B.V.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/cs
dc.subjectcloud learningcs
dc.subjectenergy harvestingcs
dc.subjectenergy managementcs
dc.subjectevolutionary fuzzy rulescs
dc.subjectInternet-of-Thingscs
dc.titleAdaptive energy management strategy for solar energy harvesting IoT nodes by evolutionary fuzzy rulescs
dc.typearticlecs
dc.identifier.doi10.1016/j.iot.2024.101197
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume26cs
dc.description.firstpageart. no. 101197cs
dc.identifier.wos001237074400001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 The Author(s). Published by Elsevier B.V.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 The Author(s). Published by Elsevier B.V.