Evaluation of performance enhancement in Ethereum fraud detection using oversampling techniques
| dc.contributor.author | Ravindranath, Vaishali | |
| dc.contributor.author | Nallakaruppan, M. K. | |
| dc.contributor.author | Shri, M. Lawanya | |
| dc.contributor.author | Balusamy, Balamurugan | |
| dc.contributor.author | Bhattacharyya, Siddhartha | |
| dc.date.accessioned | 2025-02-19T16:28:59Z | |
| dc.date.available | 2025-02-19T16:28:59Z | |
| dc.date.issued | 2024 | |
| dc.identifier.citation | Applied Soft Computing. 2024, vol. 161, art. no. 111698. | cs |
| dc.identifier.issn | 1568-4946 | |
| dc.identifier.issn | 1872-9681 | |
| dc.identifier.uri | http://hdl.handle.net/10084/155760 | |
| dc.description.abstract | With the growing popularity of cryptocurrencies and their decentralized nature, the risk of fraudulent activities within these ecosystems has become a pressing concern. This research paper focuses on Ethereum fraud detection using a dataset specifically curated for this purpose. The methodology encompasses essential steps, including data cleaning, correlation analysis, data splitting, and exploratory data analysis to understand the data characteristics. Subsequently, self -optimized machine learning models are trained with the Pycaret library while addressing the class imbalance using SMOTENC (Synthetic Minority oversampling Technique for Nominal and Continuous Data), ADA-SYN (Adaptive Synthetic Algorithm), and K -Means -SMOTE techniques. The performance of the various models is evaluated on test and validation datasets using metrics such as accuracy, precision, recall, and AUC (Area Under Curve). The study reveals that the ensemble models, particularly CATBoost (Categorical Boost) and LGBM (Light Gradient Boost Method), show exceptional efficiency, with accuracy ranging from 97% to 98.42% after oversampling. Moreover, these models exhibit higher F1 scores and AUC values, indicating their potential to detect fraud effectively. The validation metrics also lie in the same range, demonstrating that the models do not suffer from over -fitting. The experiment demonstrates the promise of ensemble models in Ethereum fraud detection, paving the way for deploying robust fraud detection systems in crypto-currency ecosystems. The results show that the K -Means SMOTE oversampling technique has the highest classification accuracy levels of 98.42% with an AUC of 99.82%. | cs |
| dc.language.iso | en | cs |
| dc.publisher | Elsevier | cs |
| dc.relation.ispartofseries | Applied Soft Computing | cs |
| dc.relation.uri | https://doi.org/10.1016/j.asoc.2024.111698 | cs |
| dc.rights | © 2024 Elsevier B.V. All rights reserved. | cs |
| dc.subject | SMOTENC | cs |
| dc.subject | ADASYN | cs |
| dc.subject | K-Means SMOTE | cs |
| dc.subject | LGBM | cs |
| dc.title | Evaluation of performance enhancement in Ethereum fraud detection using oversampling techniques | cs |
| dc.type | article | cs |
| dc.identifier.doi | 10.1016/j.asoc.2024.111698 | |
| dc.type.status | Peer-reviewed | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 161 | cs |
| dc.description.firstpage | art. no. 111698 | cs |
| dc.identifier.wos | 001242793400001 |
Soubory tohoto záznamu
| Soubory | Velikost | Formát | Zobrazit |
|---|---|---|---|
|
K tomuto záznamu nejsou připojeny žádné soubory. |
|||
Tento záznam se objevuje v následujících kolekcích
-
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460) [562]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry informatiky (460) v časopisech a v Lecture Notes in Computer Science registrovaných ve Web of Science od roku 2003 po současnost. -
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost.