Zobrazit minimální záznam

dc.contributor.authorSayed, Gehad Ismail
dc.contributor.authorEl-Latif, Eman I. Abd
dc.contributor.authorHassanien, Aboul Ella
dc.contributor.authorSnášel, Václav
dc.date.accessioned2025-03-03T10:01:14Z
dc.date.available2025-03-03T10:01:14Z
dc.date.issued2024
dc.identifier.citationEnergy Reports. 2024, vol. 11, p. 6208-6222.cs
dc.identifier.issn2352-4847
dc.identifier.urihttp://hdl.handle.net/10084/155774
dc.description.abstractResearch and development in the field of renewable energy is receiving more attention as a result of the growing demand for clean, sustainable energy. This paper proposes a model for forecasting renewable energy generation. The proposed model consists of three main phases: data preparation, feature selection-based rough set and nutcracker optimization algorithm (NOA), and data classification and cross-validation. First, the missing values are tackled using the mean method. Then, data normalization and data shuffling are applied in the data preparation phase. In the second phase, a new feature selection algorithm is proposed based on rough set theory and NOA, namely RSNOA. The proposed RSNOA is based on adopting the rough set method as the fitness function during the searching mechanism to find the optimal feature subset. Finally, a custom long -short -term memory architecture with the k-fold cross-validation method is utilized in the last phase. The experimental results revealed that the proposed model is very competitive. It is achieved with 4.2113 root mean square error, 0.96 R2, 2.835 mean absolute error, and 4.6349 mean absolute percentage error. The findings also show that the proposed model has great promise as a useful tool for accurately forecasting renewable energy generation across various sources.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesEnergy Reportscs
dc.relation.urihttps://doi.org/10.1016/j.egyr.2024.05.072cs
dc.rights© 2024 The Authors. Published by Elsevier Ltd.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectrenewable energycs
dc.subjectnutcracker optimization algorithmcs
dc.subjectdeep-learningcs
dc.subjectlong short-term memorycs
dc.subjectfeature selectioncs
dc.subjectrough setcs
dc.titleOptimized long short-term memory with rough set for sustainable forecasting renewable energy generationcs
dc.typearticlecs
dc.identifier.doi10.1016/j.egyr.2024.05.072
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.description.lastpage6222cs
dc.description.firstpage6208cs
dc.identifier.wos001251264100001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 The Authors. Published by Elsevier Ltd.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 The Authors. Published by Elsevier Ltd.