Zobrazit minimální záznam

dc.contributor.authorNguyen, Tan N.
dc.contributor.authorVan Chien, Trinh
dc.contributor.authorDinh, Viet Quang
dc.contributor.authorTu, Lam-Thanh
dc.contributor.authorVozňák, Miroslav
dc.contributor.authorDing, Zhiguo
dc.date.accessioned2025-03-05T10:32:43Z
dc.date.available2025-03-05T10:32:43Z
dc.date.issued2024
dc.identifier.citationIEEE Sensors Journal. 2024, vol. 24, issue 7, p. 11184-11194.cs
dc.identifier.issn1530-437X
dc.identifier.issn1558-1748
dc.identifier.urihttp://hdl.handle.net/10084/155776
dc.description.abstractCommunication reliability is one of the key challenging issues in future communications due to massive connections, especially for wireless sensor networks (WSNs) with low-cost devices. This article studies the communication reliability of wireless systems in the presence of multiple sensor relays, which carry out energy harvesting to prolong the network lifetime. By exploiting the deep shadow fading model, the three sensor selection methods are investigated based on the different prior information of the propagation channels. We then derive the analytical expressions of the outage probability (OP) for each sensor selection, which only depends on the statistical channel knowledge that can be applied for multiple coherence intervals whenever the channel statistics remain the same. Since the obtained analytical OPs are interpreted based on several coupled integrals that are costly to compute, we further propose a learning framework to predict the OP with low computational complexity via exploiting supervised learning. Numerical results indicate that the two suboptimal sensor selection solutions provide a competitive OP with each other. In contrast, the optimal solution outperforms the remaining benchmarks by many folds. Besides, the deep-learning-based approach performs almost the same performance as the analytical-based framework.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Sensors Journalcs
dc.relation.urihttps://doi.org/10.1109/JSEN.2024.3365698cs
dc.rightsCopyright © 2024, IEEEcs
dc.subjectdeep neural networks (DNNs)cs
dc.subjectindependent but not necessarily identically distributed (INID) Rayleigh fading channelscs
dc.subjectoutage probability (OP)cs
dc.subjectrelay-aided wireless sensor networks (WSNs)cs
dc.subjectself-energy recyclingcs
dc.titleOutage probability analysis for relay-aided self-energy recycling wireless sensor networks over INID Rayleigh fading channelscs
dc.typearticlecs
dc.identifier.doi10.1109/JSEN.2024.3365698
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume24cs
dc.description.issue7cs
dc.description.lastpage11194cs
dc.description.firstpage11184cs
dc.identifier.wos001245579200177


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam