Zobrazit minimální záznam

dc.contributor.authorYameen, Muhammad Zubair
dc.contributor.authorJuchelková, Dagmar
dc.contributor.authorNaqvi, Salman Raza
dc.contributor.authorNoor, Tayyaba
dc.contributor.authorAli, Arshid Mahmood
dc.contributor.authorShahzad, Khurram
dc.contributor.authorRashid, Muhammad Imtiaz
dc.contributor.authorMahpudz, Aishah Binti
dc.date.accessioned2025-03-11T08:36:56Z
dc.date.available2025-03-11T08:36:56Z
dc.date.issued2024
dc.identifier.citationEnergy Conversion and Management: X. 2024, vol. 23, art. no. 100628.cs
dc.identifier.issn2590-1745
dc.identifier.urihttp://hdl.handle.net/10084/155801
dc.description.abstractThe pursuit of renewable fuels for the transportation sector, particularly for combustion engines like diesel, is crucial in reducing greenhouse gas emissions. This study introduces an innovative strategy for biodiesel production utilizing marine macroalgae Ulva lactuca as the primary feedstock, emphasizing sustainability and resource efficiency. Lipids were extracted from the macroalgae via a Soxhlet process and characterized using GC-MS and FTIR to ascertain fatty acid composition and functional groups. The Cu-BTC@AC catalyst, synthesized from the lipid-extracted algae residue via pyrolysis and hydrothermal treatment, underwent characterization using SEM-EDS, XRD, and FTIR techniques. Subsequently, the Cu-BTC@AC catalyst was employed in the transesterification process to efficiently convert the extracted algal lipids into biodiesel, achieving a high yield of 92.56 % under RSM-optimized conditions: 65 degrees C temperature, 3.96 wt% catalyst amount, 15:1 methanol-to-lipid ratio, and 140 min reaction time. Kinetic and thermodynamic parameters for biodiesel production were calculated as follows: E a = 33.20 kJ mol -1 , Delta H # = 30.39 kJ mol -1 , Delta S # = - 165.86 J mol -1 K -1 , and Delta G # = 86.48 kJ mol -1 . GC-MS analysis identified a significant FAME content in the biodiesel, comprising 98.12 % of its composition. Notably, the Cu-BTC@AC catalyst exhibited excellent reusability, maintaining 80.21 % biodiesel yield after the third cycle. Moreover, physicochemical analysis of the biodiesel confirmed its compliance with ASTM D6751 specifications, underscoring its potential as a viable alternative fuel for the transportation sector.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesEnergy Conversion and Management: Xcs
dc.relation.urihttps://doi.org/10.1016/j.ecmx.2024.100628cs
dc.rights© 2024 The Authors. Published by Elsevier Ltd.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectbiomass valorizationcs
dc.subjectlipid-extracted algaecs
dc.subjectgreen catalystcs
dc.subjectbiofuelcs
dc.subjectmacroalgal biorefinerycs
dc.subjectcircular bioeconomycs
dc.titleBiodiesel production from marine macroalgae Ulva lactuca lipids using novel Cu-BTC@AC catalyst: Parametric analysis and optimizationcs
dc.typearticlecs
dc.identifier.doi10.1016/j.ecmx.2024.100628
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume23cs
dc.description.firstpageart. no. 100628cs
dc.identifier.wos001251443400001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 The Authors. Published by Elsevier Ltd.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 The Authors. Published by Elsevier Ltd.