Zobrazit minimální záznam

dc.contributor.authorNermoen, Anders
dc.contributor.authorShchipanov, Anton
dc.contributor.authorPorzer, Michal Matloch
dc.contributor.authorŠancer, Jindřich
dc.contributor.authorBerenblyum, Roman
dc.date.accessioned2025-04-11T06:57:22Z
dc.date.available2025-04-11T06:57:22Z
dc.date.issued2024
dc.identifier.citationInternational Journal of Greenhouse Gas Control. 2024, vol. 136.cs
dc.identifier.issn1750-5836
dc.identifier.issn1878-0148
dc.identifier.urihttp://hdl.handle.net/10084/155852
dc.description.abstractCarbon Capture and Storage (CCS) is a pre-requisite to decarbonize CO2 emissions from industrial sectors and as an industry capable of compensating for hard-to-abate emissions in a net zero scenario. A method was developed to evaluate the geomechanical constraints and safe operating envelope as function of pore pressure and temperature. The probability of failure was estimated from uncertain input stiffness and strength data, and as cooling and re-pressurization shifts the in-situ effective stresses, the safe operating envelope was determined, here given by pressure and temperature. Onshore storages nearby industrial clusters enable energy and cost-effective handling of CO2. In the SouthEastern European region, onshore depleted oil and gas fields located nearby high-emitting industries may developed into CO2 storages. This paper describes a method for determining maximum fluid pressure as function of temperature from geomechanical restrictions. The method was employed on a practical example used to evaluate the safe operation envelope for a pilot CO2 injection site into a depleted onshore naturally fractured carbonate oil and gas field. The tool uses Monte Carlo simulations to perform geomechanical stability analyses by sampling from the inherent uncertainty of the input parameters to probability of failure as function of pressure and temperature. The risk of re-opening natural fractures, induced fracturing and fault reactivation are evaluated so the safe operating envelope can be obtained. The uncertainty of the input parameters is thus directly reflected in the safe operating envelope - thus providing an effective communication of value information to external stake holders when maturing a CO2 storage pilot.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesInternational Journal of Greenhouse Gas Controlcs
dc.relation.urihttps://doi.org/10.1016/j.ijggc.2024.104189cs
dc.rights© 2024 The Author(s). Published by Elsevier Ltd.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmechanical stabilitycs
dc.subjectCO2 storagecs
dc.subjectsafe operating envelopecs
dc.subjectstrengthcs
dc.subjectstresscs
dc.subjectMonte Carlo simulationcs
dc.subjectprobability of failurecs
dc.subjectmethod developmentcs
dc.titleEvaluation of safe operating envelope for CO2 injection under uncertain rock mechanical parameters and earth stressescs
dc.typearticlecs
dc.identifier.doi10.1016/j.ijggc.2024.104189
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume136cs
dc.identifier.wos001262387600001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2024 The Author(s). Published by Elsevier Ltd.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2024 The Author(s). Published by Elsevier Ltd.