dc.contributor.author | Dostál, Zdeněk | |
dc.contributor.author | Horák, David | |
dc.contributor.author | Stefanica, Dan | |
dc.date.accessioned | 2009-09-18T06:46:47Z | |
dc.date.available | 2009-09-18T06:46:47Z | |
dc.date.issued | 2009 | |
dc.identifier.citation | Journal of Computational and Applied Mathematics. 2009, vol. 231, issue 2, p. 577-591. | en |
dc.identifier.issn | 0377-0427 | |
dc.identifier.uri | http://hdl.handle.net/10084/75990 | |
dc.description.abstract | By combining FETI algorithms of dual-primal type with recent results for bound constrained quadratic programming problems, we develop an optimal algorithm for the numerical solution of coercive variational inequalities. The model problem is discretized using non-penetration conditions of mortar type across the potential contact interface, and a FETI–DP algorithm is formulated. The resulting quadratic programming problem with bound constraints is solved by a scalable algorithm with a known rate of convergence given in terms of the spectral condition number of the quadratic problem. Numerical experiments for non-matching meshes across the contact interface confirm the theoretical scalability of the algorithm. | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.ispartofseries | Journal of Computational and Applied Mathematics | en |
dc.relation.uri | http://dx.doi.org/10.1016/j.cam.2009.04.017 | en |
dc.subject | coercive variational inequalities | en |
dc.subject | FETI–DP algorithms | en |
dc.subject | mortar finite elements | en |
dc.subject | modified proportioning algorithms | en |
dc.title | A scalable FETI–DP algorithm with non-penetration mortar conditions on contact interface | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.identifier.doi | 10.1016/j.cam.2009.04.017 | |
dc.identifier.wos | 000268515000008 | |