dc.contributor.author | Bača, Martin | |
dc.contributor.author | Kovář, Petr | |
dc.contributor.author | Semaničová-Feňovčíková, Andrea | |
dc.contributor.author | Shafig, Muhammad Kashif | |
dc.date.accessioned | 2010-05-03T12:44:17Z | |
dc.date.available | 2010-05-03T12:44:17Z | |
dc.date.issued | 2010 | |
dc.identifier.citation | Discrete Mathematics. 2010, vol. 310, issue 9, p. 1408-1412. | en |
dc.identifier.issn | 0012-365X | |
dc.identifier.uri | http://hdl.handle.net/10084/78268 | |
dc.description.abstract | A labeling of a graph is a mapping that carries some set of graph elements into numbers (usually positive integers). An (a,d)-edge-antimagic total labeling of a graph with p vertices and q edges is a one-to-one mapping that takes the vertices and edges onto the integers 1,2…,p+q, so that the sum of the labels on the edges and the labels of their end vertices forms an arithmetic progression starting at a and having difference d. Such a labeling is called super if the p smallest possible labels appear at the vertices.
In this paper we prove that every even regular graph and every odd regular graph with a 1-factor are super (a,1)-edge-antimagic total. We also introduce some constructions of non-regular super (a,1)-edge-antimagic total graphs. | en |
dc.format.extent | 120780 bytes | cs |
dc.format.mimetype | application/pdf | cs |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.ispartofseries | Discrete Mathematics | en |
dc.relation.uri | https://doi.org/10.1016/j.disc.2009.04.011 | en |
dc.subject | super edge-antimagic total labeling | en |
dc.subject | regular graph | en |
dc.title | On super (a, 1)-edge-antimagic total labelings of regular graphs | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.identifier.doi | 10.1016/j.disc.2009.04.011 | |
dc.rights.access | openAccess | |
dc.type.version | submittedVersion | |
dc.identifier.wos | 000276731900002 | |