Zobrazit minimální záznam

dc.contributor.authorBača, Martin
dc.contributor.authorKovář, Petr
dc.contributor.authorSemaničová-Feňovčíková, Andrea
dc.contributor.authorShafig, Muhammad Kashif
dc.date.accessioned2010-05-03T12:44:17Z
dc.date.available2010-05-03T12:44:17Z
dc.date.issued2010
dc.identifier.citationDiscrete Mathematics. 2010, vol. 310, issue 9, p. 1408-1412.en
dc.identifier.issn0012-365X
dc.identifier.urihttp://hdl.handle.net/10084/78268
dc.description.abstractA labeling of a graph is a mapping that carries some set of graph elements into numbers (usually positive integers). An (a,d)-edge-antimagic total labeling of a graph with p vertices and q edges is a one-to-one mapping that takes the vertices and edges onto the integers 1,2…,p+q, so that the sum of the labels on the edges and the labels of their end vertices forms an arithmetic progression starting at a and having difference d. Such a labeling is called super if the p smallest possible labels appear at the vertices. In this paper we prove that every even regular graph and every odd regular graph with a 1-factor are super (a,1)-edge-antimagic total. We also introduce some constructions of non-regular super (a,1)-edge-antimagic total graphs.en
dc.format.extent120780 bytescs
dc.format.mimetypeapplication/pdfcs
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseriesDiscrete Mathematicsen
dc.relation.urihttps://doi.org/10.1016/j.disc.2009.04.011en
dc.subjectsuper edge-antimagic total labelingen
dc.subjectregular graphen
dc.titleOn super (a, 1)-edge-antimagic total labelings of regular graphsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.doi10.1016/j.disc.2009.04.011
dc.rights.accessopenAccess
dc.type.versionsubmittedVersion
dc.identifier.wos000276731900002


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam