dc.contributor.author | Rachůnek, Jiří | |
dc.contributor.author | Šalounová, Dana | |
dc.date.accessioned | 2010-05-17T07:15:05Z | |
dc.date.available | 2010-05-17T07:15:05Z | |
dc.date.issued | 2010 | |
dc.identifier.citation | Journal of Multiple-Valued Logic and Soft Computing. 2010, vol. 16, no. 3-5, s. 449-465. | en |
dc.identifier.issn | 1542-3980 | |
dc.identifier.issn | 1542-3999 | |
dc.identifier.uri | http://hdl.handle.net/10084/78289 | |
dc.description.abstract | Bounded residuated lattice ordered monoids (R -monoids) are a common generalization of pseudo-BL-algebras and Heyting algebras, i.e. algebras of the non-commutative basic fuzzy logic (and consequently of the basic fuzzy logic, the Łukasiewicz logic and the non-commutative Łukasiewicz logic) and the intuitionistic logic, respectively. In the paper we introduce and study classes of filters of bounded R -monoids leading (in normal cases) to quotient algebras which are Heyting algebras, Boolean algebras and GMV-algebras (=pseudo-MV-algebras), respectively. | en |
dc.language.iso | en | en |
dc.publisher | Old City Publishing | en |
dc.relation.ispartofseries | Journal of Multiple-Valued Logic and Soft Computing | en |
dc.subject | residuated l-monoid | en |
dc.subject | pseudo-BL-algebra | en |
dc.subject | Heyting algebra | en |
dc.subject | pseudo-MV-algebra | en |
dc.subject | filter | en |
dc.subject | normal filter | en |
dc.title | Filter theory of bounded residuated lattice ordered monoids | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.identifier.wos | 000277167200013 | |