Zobrazit minimální záznam

dc.contributor.authorRachůnek, Jiří
dc.contributor.authorŠalounová, Dana
dc.date.accessioned2010-05-17T07:15:05Z
dc.date.available2010-05-17T07:15:05Z
dc.date.issued2010
dc.identifier.citationJournal of Multiple-Valued Logic and Soft Computing. 2010, vol. 16, no. 3-5, s. 449-465.en
dc.identifier.issn1542-3980
dc.identifier.issn1542-3999
dc.identifier.urihttp://hdl.handle.net/10084/78289
dc.description.abstractBounded residuated lattice ordered monoids (R -monoids) are a common generalization of pseudo-BL-algebras and Heyting algebras, i.e. algebras of the non-commutative basic fuzzy logic (and consequently of the basic fuzzy logic, the Łukasiewicz logic and the non-commutative Łukasiewicz logic) and the intuitionistic logic, respectively. In the paper we introduce and study classes of filters of bounded R -monoids leading (in normal cases) to quotient algebras which are Heyting algebras, Boolean algebras and GMV-algebras (=pseudo-MV-algebras), respectively.en
dc.language.isoenen
dc.publisherOld City Publishingen
dc.relation.ispartofseriesJournal of Multiple-Valued Logic and Soft Computingen
dc.subjectresiduated l-monoiden
dc.subjectpseudo-BL-algebraen
dc.subjectHeyting algebraen
dc.subjectpseudo-MV-algebraen
dc.subjectfilteren
dc.subjectnormal filteren
dc.titleFilter theory of bounded residuated lattice ordered monoidsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.wos000277167200013


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam