Zobrazit minimální záznam

dc.contributor.authorRachůnek, Jiří
dc.contributor.authorŠalounová, Dana
dc.date.accessioned2011-01-21T13:14:20Z
dc.date.available2011-01-21T13:14:20Z
dc.date.issued2010
dc.identifier.citationMathematica Slovaca. 2010, vol. 60, no. 6, p. 823-838.en
dc.identifier.issn0139-9918
dc.identifier.issn1337-2211
dc.identifier.urihttp://hdl.handle.net/10084/83710
dc.description.abstractBounded Rℓ-monoids form a large subclass of the class of residuated lattices which contains certain of algebras of fuzzy and intuitionistic logics, such as GMV-algebras (= pseudo-MV-algebras), pseudo-BL-algebras and Heyting algebras. Moreover, GMV-algebras and pseudo-BL-algebras can be recognized as special kinds of pseudo-MV-effect algebras and pseudo-weak MV-effect algebras, i.e., as algebras of some quantum logics. In the paper, bipartite, local and perfect Rℓ-monoids are investigated and it is shown that every good perfect Rℓ-monoid has a state (= an analogue of probability measure).en
dc.language.isoenen
dc.publisherVersitaen
dc.publisherVersitaen
dc.relation.ispartofseriesMathematica Slovacaen
dc.relation.urihttp://dx.doi.org/10.2478/s12175-010-0050-6en
dc.subjectRℓ-monoiden
dc.subjectpseudo BL-algebraen
dc.subjectpseudo MV-algebraen
dc.subjectlocal Rℓ-monoiden
dc.subjectperfect Rℓ-monoiden
dc.titlePerfect residuated lattice ordered monoidsen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.wos000285356400007


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam