dc.contributor.author | Rachůnek, Jiří | |
dc.contributor.author | Šalounová, Dana | |
dc.date.accessioned | 2011-01-21T13:14:20Z | |
dc.date.available | 2011-01-21T13:14:20Z | |
dc.date.issued | 2010 | |
dc.identifier.citation | Mathematica Slovaca. 2010, vol. 60, no. 6, p. 823-838. | en |
dc.identifier.issn | 0139-9918 | |
dc.identifier.issn | 1337-2211 | |
dc.identifier.uri | http://hdl.handle.net/10084/83710 | |
dc.description.abstract | Bounded Rℓ-monoids form a large subclass of the class of residuated lattices which contains certain of algebras of fuzzy and intuitionistic logics, such as GMV-algebras (= pseudo-MV-algebras), pseudo-BL-algebras and Heyting algebras. Moreover, GMV-algebras and pseudo-BL-algebras can be recognized as special kinds of pseudo-MV-effect algebras and pseudo-weak MV-effect algebras, i.e., as algebras of some quantum logics. In the paper, bipartite, local and perfect Rℓ-monoids are investigated and it is shown that every good perfect Rℓ-monoid has a state (= an analogue of probability measure). | en |
dc.language.iso | en | en |
dc.publisher | Versita | en |
dc.publisher | Versita | en |
dc.relation.ispartofseries | Mathematica Slovaca | en |
dc.relation.uri | http://dx.doi.org/10.2478/s12175-010-0050-6 | en |
dc.subject | Rℓ-monoid | en |
dc.subject | pseudo BL-algebra | en |
dc.subject | pseudo MV-algebra | en |
dc.subject | local Rℓ-monoid | en |
dc.subject | perfect Rℓ-monoid | en |
dc.title | Perfect residuated lattice ordered monoids | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.identifier.wos | 000285356400007 | |