dc.contributor.author | Rachůnek, Jiří | |
dc.contributor.author | Šalounová, Dana | |
dc.date.accessioned | 2011-03-16T09:52:27Z | |
dc.date.available | 2011-03-16T09:52:27Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Soft Computing. 2011, vol. 15, no. 1, p. 199-203. | en |
dc.identifier.issn | 1432-7643 | |
dc.identifier.issn | 1433-7479 | |
dc.identifier.uri | http://hdl.handle.net/10084/84364 | |
dc.description.abstract | Bounded residuated lattice ordered monoids (RlR-monoids) are a common generalization of pseudo-BLBL-algebras and Heyting algebras, i.e. algebras of the non-commutative basic fuzzy logic (and consequently of the basic fuzzy logic, the Łukasiewicz logic and the non-commutative Łukasiewicz logic) and the intuitionistic logic, respectively. We investigate bounded RlR-monoids satisfying the general comparability condition in connection with their states (analogues of probability measures). It is shown that if an extremal state on Boolean elements fulfils a simple condition, then it can be uniquely extended to an extremal state on the RlR-monoid, and that if every extremal state satisfies this condition, then the RlR-monoid is a pseudo-BLBL-algebra. | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | Soft Computing | en |
dc.relation.uri | http://dx.doi.org/10.1007/s00500-010-0545-7 | en |
dc.subject | bounded residuated l-monoid | en |
dc.subject | pseudo-BLBL-algebra | en |
dc.subject | heyting algebra | en |
dc.subject | pseudo-MV-algebra | en |
dc.subject | filter | en |
dc.subject | normal filter | en |
dc.subject | general comparability property | en |
dc.subject | Boolean element | en |
dc.subject | state | en |
dc.subject | extremal state | en |
dc.title | Extremal states on bounded residuated l-monoids with general comparability | en |
dc.type | article | en |
dc.identifier.location | Není ve fondu ÚK | en |
dc.identifier.doi | 10.1007/s00500-010-0545-7 | |
dc.identifier.wos | 000286197800020 | |