Zobrazit minimální záznam

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorKozubek, Tomáš
dc.contributor.authorMarkopoulos, Alexandros
dc.contributor.authorMenšík, Martin
dc.date.accessioned2011-04-05T07:31:34Z
dc.date.available2011-04-05T07:31:34Z
dc.date.issued2011
dc.identifier.citationApplied Mathematics and Computation. 2011, vol. 217, issue 13, p. 6067-6077.en
dc.identifier.issn0096-3003
dc.identifier.urihttp://hdl.handle.net/10084/84486
dc.description.abstractThe Cholesky decomposition of a symmetric positive semidefinite matrix A is a useful tool for solving the related consistent system of linear equations or evaluating the action of a generalized inverse, especially when A is relatively large and sparse. To use the Cholesky decomposition effectively, it is necessary to identify reliably the positions of zero rows or columns of the factors and to choose these positions so that the nonsingular submatrix of A of the maximal rank is reasonably conditioned. The point of this note is to show how to exploit information about the kernel of A to accomplish both tasks. The results are illustrated by numerical experiments.en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseriesApplied Mathematics and Computationen
dc.relation.urihttp://dx.doi.org/10.1016/j.amc.2010.12.069en
dc.subjectholesky decompositionen
dc.subjectsemidefinite matrixen
dc.subjectgeneralized inverseen
dc.titleCholesky decomposition of a positive semidefinite matrix with known kernelen
dc.typearticleen
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.doi10.1016/j.amc.2010.12.069
dc.identifier.wos000287690400006


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam