Zobrazit minimální záznam

dc.contributor.authorBrzobohatý, Tomáš
dc.contributor.authorDostál, Zdeněk
dc.contributor.authorKozubek, Tomáš
dc.contributor.authorKovář, Petr
dc.contributor.authorMarkopoulos, Alexandros
dc.date.accessioned2011-11-04T11:56:53Z
dc.date.available2011-11-04T11:56:53Z
dc.date.issued2011
dc.identifier.citationInternational Journal for Numerical Methods in Engineering. 2011, vol. 88, issue 5, p. 1384-1405.cs
dc.identifier.issn0029-5981
dc.identifier.issn1097-0207
dc.identifier.urihttp://hdl.handle.net/10084/89673
dc.description.abstractThe direct methods for the solution of systems of linear equations with a symmetric positive-semidefinite (SPS) matrix A usually comprise the Cholesky decomposition of a nonsingular diagonal block A[MATHEMATICAL SCRIPT CAPITAL J][MATHEMATICAL SCRIPT CAPITAL J] of A and effective evaluation of the action of a generalized inverse of the corresponding Schur complement. In this note we deal with both problems, paying special attention to the stiffness matrices of floating structures without mechanisms. We present a procedure which first identifies a well-conditioned positive-definite diagonal block A[MATHEMATICAL SCRIPT CAPITAL J][MATHEMATICAL SCRIPT CAPITAL J] of A, then decomposes A[MATHEMATICAL SCRIPT CAPITAL J][MATHEMATICAL SCRIPT CAPITAL J] by the Cholesky decomposition, and finally evaluates a generalized inverse of the Schur complement S of A[MATHEMATICAL SCRIPT CAPITAL J][MATHEMATICAL SCRIPT CAPITAL J]. The Schur complement S is typically very small, so the generalized inverse can be effectively evaluated by the singular value decomposition (SVD). If the rank of A or a lower bound on the nonzero eigenvalues of A are known, then the SVD can be implemented without any ‘epsilon’. Moreover, if the kernel of A is known, then the SVD can be replaced by effective regularization. The results of numerical experiments show that the proposed method is useful for effective implementation of the FETI-based domain decomposition methods.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesInternational Journal for Numerical Methods in Engineeringcs
dc.relation.urihttp://dx.doi.org/10.1002/nme.3187cs
dc.subjectCholesky decompositioncs
dc.subjectsemidefinite matricescs
dc.subjectgeneralized inversecs
dc.subjectdomain decompositioncs
dc.titleCholesky decomposition with fixing nodes to stable computation of a generalized inverse of the stiffness matrix of a floating structurecs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.identifier.doi10.1002/nme.3187
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume88cs
dc.description.issue5cs
dc.description.lastpage1405cs
dc.description.firstpage1384cs
dc.identifier.wos000295226800004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam