dc.contributor.author | Balibrea, Francisco | |
dc.contributor.author | Dvorníková, Gabriela | |
dc.contributor.author | Lampart, Marek | |
dc.contributor.author | Oprocha, Piotr | |
dc.date.accessioned | 2012-03-09T13:57:57Z | |
dc.date.available | 2012-03-09T13:57:57Z | |
dc.date.issued | 2012 | |
dc.identifier.citation | Nonlinear Analysis: Theory, Methods & Applications. 2012, vol. 75, issue 6, p. 3262-3267. | cs |
dc.identifier.issn | 0362-546X | |
dc.identifier.uri | http://hdl.handle.net/10084/90232 | |
dc.description.abstract | In this paper we study the structure of negative limit sets of maps on the unit interval. We prove that every α-limit set is an ω-limit set, while the converse is not true in general. Surprisingly, it may happen that the space of all α-limit sets of interval maps is not closed in the Hausdorff metric (and thus some ω-limit sets are never obtained as α-limit sets). Moreover, we prove that the set of all recurrent points is closed if and only if the space of all α-limit sets is closed. | cs |
dc.format.extent | 543680 bytes | cs |
dc.format.mimetype | application/pdf | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | Nonlinear Analysis: Theory, Methods & Applications | cs |
dc.relation.uri | http://dx.doi.org/10.1016/j.na.2011.12.030 | cs |
dc.subject | interval map | cs |
dc.subject | negative trajectory | cs |
dc.subject | limit set | cs |
dc.subject | solenoid | cs |
dc.title | On negative limit sets for one-dimensional dynamics | cs |
dc.type | article | cs |
dc.identifier.location | Není ve fondu ÚK | cs |
dc.identifier.doi | 10.1016/j.na.2011.12.030 | |
dc.rights.access | openAccess | |
dc.type.version | submittedVersion | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 75 | cs |
dc.description.issue | 6 | cs |
dc.description.lastpage | 3267 | cs |
dc.description.firstpage | 3262 | cs |
dc.identifier.wos | 000300191000023 | |