Zobrazit minimální záznam

dc.contributor.authorBalibrea, Francisco
dc.contributor.authorDvorníková, Gabriela
dc.contributor.authorLampart, Marek
dc.contributor.authorOprocha, Piotr
dc.date.accessioned2012-03-09T13:57:57Z
dc.date.available2012-03-09T13:57:57Z
dc.date.issued2012
dc.identifier.citationNonlinear Analysis: Theory, Methods & Applications. 2012, vol. 75, issue 6, p. 3262-3267.cs
dc.identifier.issn0362-546X
dc.identifier.urihttp://hdl.handle.net/10084/90232
dc.description.abstractIn this paper we study the structure of negative limit sets of maps on the unit interval. We prove that every α-limit set is an ω-limit set, while the converse is not true in general. Surprisingly, it may happen that the space of all α-limit sets of interval maps is not closed in the Hausdorff metric (and thus some ω-limit sets are never obtained as α-limit sets). Moreover, we prove that the set of all recurrent points is closed if and only if the space of all α-limit sets is closed.cs
dc.format.extent543680 bytescs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesNonlinear Analysis: Theory, Methods & Applicationscs
dc.relation.urihttp://dx.doi.org/10.1016/j.na.2011.12.030cs
dc.subjectinterval mapcs
dc.subjectnegative trajectorycs
dc.subjectlimit setcs
dc.subjectsolenoidcs
dc.titleOn negative limit sets for one-dimensional dynamicscs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.identifier.doi10.1016/j.na.2011.12.030
dc.rights.accessopenAccess
dc.type.versionsubmittedVersion
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume75cs
dc.description.issue6cs
dc.description.lastpage3267cs
dc.description.firstpage3262cs
dc.identifier.wos000300191000023


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam