Zobrazit minimální záznam

dc.contributor.authorKovář, Petr
dc.contributor.authorKubesa, Michael
dc.contributor.authorMeszka, Mariusz
dc.date.accessioned2012-03-23T07:15:46Z
dc.date.available2012-03-23T07:15:46Z
dc.date.issued2012
dc.identifier.citationDiscrete Mathematics. 2012, vol. 312, issue 6, p. 1084-1093.cs
dc.identifier.issn0012-365X
dc.identifier.urihttp://hdl.handle.net/10084/90301
dc.description.abstractLet r and n be positive integers with r<2n. A broom of order 2n is the union of the path on P2n−r−1 and the star K1,r, plus one edge joining the center of the star to an endpoint of the path. It was shown by Kubesa (2005) [10] that the broom factorizes the complete graph K2n for odd n and View the MathML source. In this note we give a complete classification of brooms that factorize K2n by giving a constructive proof for all View the MathML source (with one exceptional case) and by showing that the brooms for View the MathML source do not factorize the complete graph K2n.cs
dc.format.extent649852 bytescs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesDiscrete Mathematicscs
dc.relation.urihttps://doi.org/10.1016/j.disc.2011.11.034cs
dc.subjectgraph factorizationcs
dc.subjectgraph labelingcs
dc.subjectspanning treescs
dc.titleFactorizations of complete graphs into broomscs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.identifier.doi10.1016/j.disc.2011.11.034
dc.rights.accessopenAccess
dc.type.versionsubmittedVersion
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume312cs
dc.description.issue6cs
dc.description.lastpage1093cs
dc.description.firstpage1084cs
dc.identifier.wos000300811200002


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam