dc.contributor.author | Kovář, Petr | |
dc.contributor.author | Kubesa, Michael | |
dc.contributor.author | Meszka, Mariusz | |
dc.date.accessioned | 2012-03-23T07:15:46Z | |
dc.date.available | 2012-03-23T07:15:46Z | |
dc.date.issued | 2012 | |
dc.identifier.citation | Discrete Mathematics. 2012, vol. 312, issue 6, p. 1084-1093. | cs |
dc.identifier.issn | 0012-365X | |
dc.identifier.uri | http://hdl.handle.net/10084/90301 | |
dc.description.abstract | Let r and n be positive integers with r<2n. A broom of order 2n is the union of the path on P2n−r−1 and the star K1,r, plus one edge joining the center of the star to an endpoint of the path. It was shown by Kubesa (2005) [10] that the broom factorizes the complete graph K2n for odd n and View the MathML source. In this note we give a complete classification of brooms that factorize K2n by giving a constructive proof for all View the MathML source (with one exceptional case) and by showing that the brooms for View the MathML source do not factorize the complete graph K2n. | cs |
dc.format.extent | 649852 bytes | cs |
dc.format.mimetype | application/pdf | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | Discrete Mathematics | cs |
dc.relation.uri | https://doi.org/10.1016/j.disc.2011.11.034 | cs |
dc.subject | graph factorization | cs |
dc.subject | graph labeling | cs |
dc.subject | spanning trees | cs |
dc.title | Factorizations of complete graphs into brooms | cs |
dc.type | article | cs |
dc.identifier.location | Není ve fondu ÚK | cs |
dc.identifier.doi | 10.1016/j.disc.2011.11.034 | |
dc.rights.access | openAccess | |
dc.type.version | submittedVersion | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 312 | cs |
dc.description.issue | 6 | cs |
dc.description.lastpage | 1093 | cs |
dc.description.firstpage | 1084 | cs |
dc.identifier.wos | 000300811200002 | |