dc.contributor.author | Tůma, Jiří | |
dc.contributor.author | Babiuch, Marek | |
dc.contributor.author | Kočí, Petr | |
dc.date.accessioned | 2012-04-04T08:36:01Z | |
dc.date.available | 2012-04-04T08:36:01Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Acta Montanistica Slovaca. 2011, roč. 16, č. 1, s. 66-73. | cs |
dc.identifier.issn | 1335-1788 | |
dc.identifier.uri | http://hdl.handle.net/10084/90311 | |
dc.description.abstract | ¨As it is stated in the ISO 18431-4 Standard, a Shock Response Spectrum is defined as the response to a given acceleration
acting at a set of mass-damper-spring oscillators, which are adjusted to the different resonance frequencies while their resonance
gains (Q-factor) are equal to the same value. The maximum of the absolute value of the calculated responses as a function of the
resonance frequencies compose the shock response spectrum (SRS). The paper will deal with employing Signal Analyzer, the software
for signal processing, for calculation of the SRS. The theory is illustrated by examples. | cs |
dc.language.iso | en | cs |
dc.publisher | Technická univerzita Košice, Fakulta baníctva, ekológie, riadenia a geotechnológií | cs |
dc.relation.ispartofseries | Acta Montanistica Slovaca | cs |
dc.relation.uri | http://actamont.tuke.sk/pdf/2011/n1/09_Tuma.pdf | cs |
dc.subject | shock response spectrum | cs |
dc.subject | shock | cs |
dc.subject | single degree of freedom system | cs |
dc.subject | measurements | cs |
dc.subject | ramp invariant method | cs |
dc.title | Calculation of a shock response spectra | cs |
dc.type | article | cs |
dc.identifier.location | Není ve fondu ÚK | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 16 | cs |
dc.description.issue | 1 | cs |
dc.description.lastpage | 73 | cs |
dc.description.firstpage | 66 | cs |
dc.identifier.wos | 000300111400009 | |