Zobrazit minimální záznam

dc.contributor.authorWang, Lin
dc.contributor.authorYang, Bo
dc.contributor.authorChen, Yuehui
dc.contributor.authorAbraham, Ajith
dc.contributor.authorSun, Hongwei
dc.contributor.authorChen, Zhenxiang
dc.contributor.authorWang, Haiyang
dc.date.accessioned2012-06-08T08:24:25Z
dc.date.available2012-06-08T08:24:25Z
dc.date.issued2012
dc.identifier.citationKnowledge and Information Systems. 2012, vol. 31, no. 3, p. 433-454.cs
dc.identifier.issn0219-1377
dc.identifier.issn0219-3116
dc.identifier.urihttp://hdl.handle.net/10084/90551
dc.description.abstractThis paper presents a novel technique—Floating Centroids Method (FCM) designed to improve the performance of a conventional neural network classifier. Partition space is a space that is used to categorize data sample after sample is mapped by neural network. In the partition space, the centroid is a point, which denotes the center of a class. In a conventional neural network classifier, position of centroids and the relationship between centroids and classes are set manually. In addition, number of centroids is fixed with reference to the number of classes. The proposed approach introduces many floating centroids, which are spread throughout the partition space and obtained by using K-Means algorithm. Moreover, different classes labels are attached to these centroids automatically. A sample is predicted as a certain class if the closest centroid of its corresponding mapped point is labeled by this class. Experimental results illustrate that the proposed method has favorable performance especially with respect to the training accuracy, generalization accuracy, and average F-measures.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesKnowledge and Information Systemscs
dc.relation.urihttp://dx.doi.org/10.1007/s10115-011-0410-8cs
dc.subjectclassificationcs
dc.subjectneural networkscs
dc.subjectFloating Centroids Methodcs
dc.titleImprovement of neural network classifier using floating centroidscs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.identifier.doi10.1007/s10115-011-0410-8
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume31cs
dc.description.issue3cs
dc.description.lastpage454cs
dc.description.firstpage433cs
dc.identifier.wos000304116100002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam