dc.contributor.author | Cichacz, Sylwia | |
dc.contributor.author | Fronček, Dalibor | |
dc.contributor.author | Kovář, Petr | |
dc.date.accessioned | 2012-12-03T11:44:20Z | |
dc.date.available | 2012-12-03T11:44:20Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | European Journal of Combinatorics. 2013, vol. 34, issue 1, p. 104-110. | cs |
dc.identifier.issn | 0195-6698 | |
dc.identifier.uri | http://hdl.handle.net/10084/95773 | |
dc.description.abstract | R. Häggkvist proved that every 3-regular bipartite graph of order 2n with no component isomorphic to the Heawood graph decomposes the complete bipartite graph K6n,6n. In (Cichacz and Fronček, 2009) [2] the first two authors established a necessary and sufficient condition for the existence of a factorization of the complete bipartite graph Kn,n into certain families of 3-regular graphs of order 2n. In this paper we tackle the problem of decompositions of Kn,n into certain 3-regular graphs called generalized prisms. We will show that certain families of 3-regular graphs of order 2n decompose the complete bipartite graph View the MathML source. | cs |
dc.format.extent | 498332 bytes | cs |
dc.format.mimetype | application/pdf | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | European Journal of Combinatorics | cs |
dc.relation.uri | https://doi.org/10.1016/j.ejc.2012.07.018 | cs |
dc.title | Decomposition of complete bipartite graphs into generalized prisms | cs |
dc.type | article | cs |
dc.identifier.location | Není ve fondu ÚK | cs |
dc.identifier.doi | 10.1016/j.ejc.2012.07.018 | |
dc.rights.access | openAccess | |
dc.type.version | submittedVersion | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 34 | cs |
dc.description.issue | 1 | cs |
dc.description.lastpage | 110 | cs |
dc.description.firstpage | 104 | cs |
dc.identifier.wos | 000310110100010 | |