Zobrazit minimální záznam

dc.contributor.authorDhahri, Habib
dc.contributor.authorAlimi, Adel M.
dc.contributor.authorAbraham, Ajith
dc.date.accessioned2012-12-04T09:29:11Z
dc.date.available2012-12-04T09:29:11Z
dc.date.issued2012
dc.identifier.citationNeurocomputing. 2012, vol. 97, p. 131-140.cs
dc.identifier.issn0925-2312
dc.identifier.urihttp://hdl.handle.net/10084/95791
dc.description.abstractThis paper proposes a hierarchical multi-dimensional differential evolution (HMDDE) algorithm, which is an automatic computational frame work for the optimization of beta basis function neural network (BBFNN) wherein the neural network architecture, weights connection, learning algorithm and its parameters are adapted according to the problem. In the HMDDE-designed neural network, the number of individuals of the population multi-dimensions is the number of beta neural networks. The population of HMDDE forms multiple beta networks with different structures at the higher level and each individual of the previous population is optimized at a lower hierarchical level to improve the performance of each individual. For the beta neural network consisting of m neurons, n individuals (different lengths) are formed in the upper level to optimize the structure of the beta neural network. In the lower level, the population within the same length is to optimize the free parameters of the beta neural network. To evaluate the comparative performance, we used benchmark problems drawn from identification system and time series prediction area. Empirical results illustrate that the HMDDE produces a better generalization performance.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesNeurocomputingcs
dc.relation.urihttp://dx.doi.org/10.1016/j.neucom.2012.04.008cs
dc.subjectHierarchical multi-dimensions differential evolutioncs
dc.subjectBeta basis function neural networkscs
dc.subjecttime series predictioncs
dc.subjectidentification systemcs
dc.titleHierarchical multi-dimensional differential evolution for the design of beta basis function neural networkcs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.identifier.doi10.1016/j.neucom.2012.04.008
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume97cs
dc.description.lastpage140cs
dc.description.firstpage131cs
dc.identifier.wos000309318200015


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam