Zobrazit minimální záznam

dc.contributor.authorKuschel, Timo
dc.contributor.authorHamrle, Jaroslav
dc.contributor.authorPištora, Jaromír
dc.contributor.authorSaito, Kesami
dc.contributor.authorBosu, Subrojati
dc.contributor.authorSakuraba, Yuya
dc.contributor.authorTakanashi, Koki
dc.contributor.authorWollschläger, Joachim
dc.date.accessioned2013-01-18T13:31:52Z
dc.date.available2013-01-18T13:31:52Z
dc.date.issued2012
dc.identifier.citationJournal of Physics D: Applied Physics. 2012, vol. 45, issue 49, art. no. 495002.cs
dc.identifier.issn0022-3727
dc.identifier.issn1361-6463
dc.identifier.urihttp://hdl.handle.net/10084/96054
dc.description.abstractMagnetic properties of thin Co50Fe50 films on MgO(0 0 1) prepared with different annealing temperatures between room temperature and 300 °C are studied by vectorial magnetometry based on the magnetooptic Kerr effect. Independent from the annealing, the Co50Fe50 films reveal some similar magnetic properties, e.g. no quadratic magnetooptic Kerr effect and a magnetic reversal process which is completely in-plane with magnetic easy axes in Co50Fe50(1 1 0) directions. If the alignment of the external magnetic field is close to the magnetic hard axes, incoherent rotation of magnetic moments between saturation and remanence occurs instead of coherent rotation as for the other directions. If the magnitude of the magnetization is polar plotted with respect to the azimuthal magnetization angle, sequential switching of magnetic moments from one magnetic easy axis to another can be proved by the course of the magnetization. Here, a two-domain switching process can be distinguished from a four-domain switching process generated by the incoherent rotation between saturation and remanence. Furthermore, both the uniaxial magnetic anisotropy constants and the domain wall pinning energies are determined from the magnetic switching fields using the Stoner–Wohlfarth model while the cubic magnetic anisotropy constants are obtained from fitting the magnetization curves. The domain wall pinning energies obtained from these analyses decrease with increasing annealing temperature due to fewer defects in the film. The cubic magnetic anisotropy also decreases slightly which can be attributed to relaxation of the crystal lattice for increasing annealing temperature due to a small change of spin–orbit coupling. Compared with the cubic magnetic anisotropy the uniaxial magnetic anisotropy is very small. This may be attributed to the reduction of strain in the film caused by a buffer stack Cr/Au/Cr between the Co50Fe50 film and MgO(0 0 1).cs
dc.format.extent1573771 bytescs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherIOP Publishingcs
dc.relation.ispartofseriesJournal of Physics D: Applied Physicscs
dc.relation.urihttp://dx.doi.org/10.1088/0022-3727/45/49/495002cs
dc.rights© 2012 IOP Publishing Ltd
dc.subjectmagnetic properties of monolayers and thin filmscs
dc.subjectmagnetic anisotropycs
dc.subjectmagnetooptical effectscs
dc.subjectmagnetic annealing and temperature-hysteresis effectscs
dc.subjectsaturation moments and magnetic susceptibilitiescs
dc.subjectmagnetization curves, hysteresis, barkhausen and related effectscs
dc.titleMagnetic characterization of thin Co50Fe50 films by magnetooptic Kerr effectcs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.identifier.doi10.1088/0022-3727/45/49/495002
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/254511
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/254511/EU/ /HEUSPECTRO
dc.rights.accessclosedAccess
dc.type.versionpublishedVersion
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume45cs
dc.description.issue49cs
dc.description.firstpageart. no. 495002cs
dc.identifier.wos000311430900006


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam