Show simple item record

dc.contributor.authorDrobek, Jaroslav
dc.date.accessioned2013-02-13T09:27:11Z
dc.date.available2013-02-13T09:27:11Z
dc.date.issued2012
dc.identifier.citationApplications of Mathematics. 2012, vol. 57, issue 6, p. 627-640.cs
dc.identifier.issn0862-7940
dc.identifier.issn1572-9109
dc.identifier.urihttp://hdl.handle.net/10084/96089
dc.description.abstractThe paper is a contribution to the complex variable boundary element method, shortly CVBEM. It is focused on Jordan regions having piecewise regular boundaries without cusps. Dini continuous densities whose modulus of continuity ω(·) satisfies limsups↓0ω(s)ln1s=0 are considered on these boundaries. Functions satisfying the Hölder condition of order α, 0 < α ⩾ 1, belong to them. The statement that any Cauchy-type integral with such a density can be uniformly approximated by a Cauchy-type integral whose density is a piecewise linear interpolant of the original one is proved under the assumption that the mesh of the interpolation nodes is sufficiently fine and uniform. This result ensures the existence of approximate CVBEM solutions of some planar boundary value problems, especially of the Dirichlet ones.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesApplications of Mathematicscs
dc.relation.urihttp://dx.doi.org/10.1007/s10492-012-0038-3cs
dc.subjectCauchy-type integralcs
dc.subjectDini continuous densitycs
dc.subjectpiecewise linear interpolationcs
dc.subjectuniform convergencecs
dc.subjectcomplex variable boundary elementcs
dc.subjectmethodcs
dc.subject30E10cs
dc.subject30E20cs
dc.subject65N12cs
dc.subject65N38cs
dc.titleApproximations by the Cauchy-type integrals with piecewise linear densitiescs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.identifier.doi10.1007/s10492-012-0038-3
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume57cs
dc.description.issue6cs
dc.description.lastpage640cs
dc.description.firstpage627cs
dc.identifier.wos000313362900006


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record