Zobrazit minimální záznam

dc.contributor.authorJančíková, Zora
dc.contributor.authorZimný, Ondřej
dc.contributor.authorKoštial, Pavol
dc.date.accessioned2013-03-08T13:54:53Z
dc.date.available2013-03-08T13:54:53Z
dc.date.issued2013
dc.identifier.citationMetalurgija. 2013, vol. 52, no. 3, p. 379-381.cs
dc.identifier.issn0543-5846
dc.identifier.issn1334-2576
dc.identifier.urihttp://hdl.handle.net/10084/96188
dc.description.abstractThe contribution deals with the use of artifi cial neural networks for prediction of steel atmospheric corrosion. Atmospheric corrosion of metal materials exposed under atmospheric conditions depends on various factors such as local temperature, relative humidity, amount of precipitation, pH of rainfall, concentration of main pollutants and exposition time. As these factors are very complex, exact relation for mathematical description of atmospheric corrosion of various metals are not known so far. Classical analytical and mathematical functions are of limited use to describe this type of strongly non-linear system depending on various meteorological-chemical factors and interaction between them and on material parameters. Nowadays there is certain chance to predict a corrosion loss of materials by artifi cial neural networks. Neural networks are used primarily in real systems, which are characterized by high nonlinearity, considerable complexity and great diffi culty of their formal mathematical description.cs
dc.format.extent1012074 bytescs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherHrvatsko Metalurško Društvocs
dc.relation.ispartofseriesMetalurgijacs
dc.relation.urihttp://hrcak.srce.hr/file/141057cs
dc.subjectartifi cial neural networkscs
dc.subjectatmosphericcorrosioncs
dc.subjectpredictioncs
dc.subjectmodelcs
dc.titlePrediction of metal corrosion by neural networkscs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume52cs
dc.description.issue3cs
dc.description.lastpage381cs
dc.description.firstpage379cs
dc.identifier.wos000313937100023


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam