dc.contributor.author | Rachůnek, Jiří | |
dc.contributor.author | Šalounová, Dana | |
dc.date.accessioned | 2013-03-15T13:12:46Z | |
dc.date.available | 2013-03-15T13:12:46Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Order. 2013, vol. 30, issue 1, p. 195-210. | cs |
dc.identifier.issn | 0167-8094 | |
dc.identifier.issn | 1572-9273 | |
dc.identifier.uri | http://hdl.handle.net/10084/96219 | |
dc.description.abstract | Bounded integral residuated lattices form a large class of algebras which contains algebraic counterparts of several propositional logics behind many-valued reasoning and intuitionistic logic. In the paper we introduce and investigate monadic bounded integral residuated lattices which can be taken as a generalization of algebraic models of the predicate calculi of those logics in which only a single variable occurs. | cs |
dc.language.iso | en | cs |
dc.publisher | Springer | cs |
dc.relation.ispartofseries | Order | cs |
dc.relation.uri | http://dx.doi.org/10.1007/s11083-011-9236-y | cs |
dc.subject | bounded integral residuated lattice | cs |
dc.subject | monadic residuated lattice | cs |
dc.subject | algebras of logics | cs |
dc.subject | quantifier | cs |
dc.subject | 03B50 | cs |
dc.subject | 06D20 | cs |
dc.subject | 06D35 | cs |
dc.subject | 06F05 | cs |
dc.title | Monadic bounded residuated lattices | cs |
dc.type | article | cs |
dc.identifier.location | Není ve fondu ÚK | cs |
dc.identifier.doi | 10.1007/s11083-011-9236-y | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 30 | cs |
dc.description.issue | 1 | cs |
dc.description.lastpage | 210 | cs |
dc.description.firstpage | 195 | cs |
dc.identifier.wos | 000314720700011 | |