Zobrazit minimální záznam

dc.contributor.authorNovák, Jan
dc.contributor.authorKučerová, Anna
dc.contributor.authorZeman, Jan
dc.date.accessioned2013-03-28T12:10:28Z
dc.date.available2013-03-28T12:10:28Z
dc.date.issued2013
dc.identifier.citationModelling and Simulation in Materials Science and Engineering. 2013, vol. 21, issue 2, art. no. 025014.cs
dc.identifier.issn0965-0393
dc.identifier.issn1361-651X
dc.identifier.urihttp://hdl.handle.net/10084/96238
dc.description.abstractThis paper presents an approach to constructing microstructural enrichment functions to local fields in non-periodic heterogeneous materials with applications in the partition of unity and hybrid finite element schemes. It is based on a concept of aperiodic tilings by the Wang tiles, designed to produce microstructures morphologically similar to original media and enrichment functions that satisfy the underlying governing equations. An appealing feature of this approach is that the enrichment functions are defined only on a small set of square tiles and extended to larger domains by an inexpensive stochastic tiling algorithm in a non-periodic manner. The feasibility of the proposed methodology is demonstrated on constructions of stress enrichment functions for two-dimensional mono-disperse particulate media.cs
dc.language.isoencs
dc.publisherInstitute of Physics Publishingcs
dc.relation.ispartofseriesModelling and Simulation in Materials Science and Engineeringcs
dc.relation.urihttp://dx.doi.org/10.1088/0965-0393/21/2/025014cs
dc.subjectElasticity and anelasticity, stress-strain relationscs
dc.subjectElasticitycs
dc.subjectFunctional analysiscs
dc.subjectStochastic processescs
dc.titleMicrostructural enrichment functions based on stochastic Wang tilingscs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.identifier.doi10.1088/0965-0393/21/2/025014
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume21cs
dc.description.issue2cs
dc.description.firstpageart. no. 025014cs
dc.identifier.wos000315186900014


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam