Zobrazit minimální záznam

dc.contributor.authorBouchala, Jiří
dc.contributor.authorDostál, Zdeněk
dc.contributor.authorVodstrčil, Petr
dc.date.accessioned2013-04-12T08:40:36Z
dc.date.available2013-04-12T08:40:36Z
dc.date.issued2013
dc.identifier.citationJournal of Optimization Theory and Applications. 2013, vol. 157, issue 1, p. 132-140.cs
dc.identifier.issn0022-3239
dc.identifier.issn1573-2878
dc.identifier.urihttp://hdl.handle.net/10084/96255
dc.description.abstractWe examine the decrease of a strictly convex quadratic function along the projected-gradient path and show that our earlier estimates obtained for the bound constraints are valid for more general feasible sets including those defined by separable spherical constraints. The result is useful for the development of in a sense optimal algorithms for the solution of some QPQC problems with separable constraints and is an important ingredient in the development of scalable algorithms for contact problems with friction.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesJournal of Optimization Theory and Applicationscs
dc.relation.urihttps://doi.org/10.1007/s10957-012-0178-3cs
dc.subjectquadratic programming with separable constraintscs
dc.subjectspherical constraintscs
dc.subjecteuclidean gradient projectioncs
dc.subjectrate of convergencecs
dc.titleSeparable spherical constraints and the decrease of a quadratic function in the gradient projection stepcs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.identifier.doi10.1007/s10957-012-0178-3
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume157cs
dc.description.issue1cs
dc.description.lastpage140cs
dc.description.firstpage132cs
dc.identifier.wos000316346100008


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam