Zobrazit minimální záznam

dc.contributor.authorJančar, Petr
dc.date.accessioned2013-06-05T13:13:59Z
dc.date.available2013-06-05T13:13:59Z
dc.date.issued2013
dc.identifier.citationLogical Methods in Computer Science. 2013, vol. 9, issue 1, art. no. 10.cs
dc.identifier.issn1860-5974
dc.identifier.urihttp://hdl.handle.net/10084/96389
dc.description.abstractBurkart, Caucal, Steffen (1995) showed a procedure deciding bisimulation equivalence of processes in Basic Process Algebra (BPA), i.e. of sequential processes generated by context-free grammars. They improved the previous decidability result of Christensen, Huttel, Stirling (1992), since their procedure has obviously an elementary time complexity and the authors claim that a close analysis would reveal a double exponential upper bound. Here a self-contained direct proof of the membership in 2-ExpTime is given. This is done via a Prover-Refuter game which shows that there is an alternating Turing machine deciding the problem in exponential space. The proof uses similar ingredients (size-measures, decompositions, bases) as the previous proofs, but one new simplifying factor is an explicit addition of infinite regular strings to the state space. An auxiliary claim also shows an explicit exponential upper bound on the equivalence level of nonbisimilar normed BPA processes.cs
dc.language.isoencs
dc.publisherTechnische Universität Braunschweigcs
dc.relation.ispartofseriesLogical Methods in Computer Sciencecs
dc.relation.urihttp://dx.doi.org/10.2168/LMCS-9cs
dc.titleBisimilarity on basic process algebra is in 2-exptime (an explicit proof)cs
dc.typearticlecs
dc.identifier.locationNení ve fondu ÚKcs
dc.identifier.doi10.2168/LMCS-9
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume9cs
dc.description.issue1cs
dc.description.firstpageart. no. 10cs
dc.identifier.wos000317894100005


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam