Ensemble feature selection approach based on feature ranking for rice seed images classification

dc.contributor.authorTuan, Dzi Lam Tran
dc.contributor.authorSurinwarangkoon, Thongchai
dc.contributor.authorMeethongjan, Kittikhun
dc.contributor.authorHoang, Vinh Truong
dc.date.accessioned2020-10-13T06:01:27Z
dc.date.available2020-10-13T06:01:27Z
dc.date.issued2020
dc.description.abstractIn smart agriculture, rice variety inspection systems based on computer vision need to be used for recognizing rice seeds instead of using technical experts. In this paper, we have investigated three types of local descriptors, such as Local Binary Pattern (LBP), Histogram of Oriented Gradients (HOG) and GIST to characterize rice seed images. However, this approach raises the curse of dimensionality phenomenon and needs to select the relevant features for a compact and better representation model. A new ensemble feature selection is proposed to represent all useful information collected from different single feature selection methods. The experimental results have shown the efficiency of our proposed method in terms of accuracy.cs
dc.identifier.citationAdvances in electrical and electronic engineering. 2020, vol. 18, no. 3, p. 198 - 206 : ill.cs
dc.identifier.doi10.15598/aeee.v18i3.3726
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/142303
dc.languageNeuvedenocs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v18i3.3726
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.accessopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectensemble feature selectioncs
dc.subjectfeature rankingcs
dc.subjectfeature selectioncs
dc.subjectGISTcs
dc.subjectHOGcs
dc.subjectLBPcs
dc.subjectrice seed imagecs
dc.titleEnsemble feature selection approach based on feature ranking for rice seed images classificationcs
dc.typearticlecs
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
3726-488492721-1-PB.pdf
Size:
613.25 KB
Format:
Adobe Portable Document Format
Description:
3726-488492721-1-PB.pdf

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: