An Analysis Of Energy Demand In Iot Integrated Smart Grid Based On Time And Sector Using Machine Learning

dc.contributor.authorManagre, Jitendra
dc.contributor.authorGupta, Namit
dc.date.accessioned2024-03-26T08:16:13Z
dc.date.available2024-03-26T08:16:13Z
dc.date.issued2023
dc.description.abstractSmart Grids (SG) encompass the utiliza- tion of large-scale data, advanced communication in- frastructure, and enhanced efficiency in the manage- ment of electricity demand, distribution, and produc- tivity through the application of machine learning tech- niques. The utilization of machine learning facilitates the creation and implementation of proactive and au- tomated decision-making methods for smart grids. In this paper, we provide an experimental study to un- derstand the power demands of consumers (domestic and commercial) in SGs. The power demand source is considered a smart plug reading dataset. This dataset is large dataset and consists of more than 850 user plug readings. From the dataset, we have extracted two different user data. Additionally, their hourly, daily, weekly, and monthly power demand is analysed individ- ually. Next, these power demand patterns are utilized as a time series problem and the data is transformed into 5 neighbour problems to predict the next hour, day, week, and month power demand. To learn from the transformed data, Artificial Neural Network (ANN) and Linear Regression (LR) ML algorithms are used. According to the conducted experiments, we found that ANN provides more accurate prediction than LR Addi- tionally, we observe that the prediction of hourly de- mand is more accurate than the prediction of daily, weekly, and monthly demand. Additionally, the pre- diction of each kind of pattern needs an individually refined model for performing with better accuracy.cs
dc.identifier.citationAdvances in electrical and electronic engineering. 2023, vol. 21, no. 4, p. 268-281 : ill.cs
dc.identifier.doi10.15598/aeee.v21i4.5291
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/152418
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttps://doi.org/10.15598/aeee.v21i4.5291cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectArtificial Neural Network (ANN)cs
dc.subjectaccuracy improvementcs
dc.subjectDemand Side Management (DSM)cs
dc.subjectenergy managementcs
dc.subjectMachine Learn- ing (ML)cs
dc.subjectSmart Grids (SGs)cs
dc.titleAn Analysis Of Energy Demand In Iot Integrated Smart Grid Based On Time And Sector Using Machine Learningcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
5291-488497600-1-PB.pdf
Size:
987.39 KB
Format:
Adobe Portable Document Format
Description:
5291-488497600-1-PB

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: