Genetic and random search methods in optimal shape design problems

dc.contributor.authorHaslinger, Jaroslav
dc.contributor.authorJedelský, David
dc.contributor.authorKozubek, Tomáš
dc.contributor.authorTvrdík, Josef
dc.date.accessioned2006-11-09T09:44:26Z
dc.date.available2006-11-09T09:44:26Z
dc.date.issued2000
dc.description.abstract-enWe describe the application of two global optimization methods, namely of genetic and random search type algorithms in shape optimization. When the so-called fictitious domain approaches are used for the numerical realization of state problems, the resulting minimized function is non-differentiable and stair-wise, in general. Such complicated behaviour excludes the use of classical local methods. Specific modifications of the above-mentioned global methods for our class of problems are described. Numerical results of several model examples computed by different variants of genetic and random search type algorithms are discussed.en
dc.identifier.citationJournal of Global Optimization. 2000, vol. 16, no. 2, p. 109-196.en
dc.identifier.doi10.1023/A:1008380715489
dc.identifier.issn0925-5001
dc.identifier.issn1573-2916
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.urihttp://hdl.handle.net/10084/57998
dc.identifier.wos000088031900001
dc.language.isoenen
dc.relation.ispartofseriesJournal of Global Optimizationen
dc.relation.urihttp://dx.doi.org/10.1023/A:1008380715489en
dc.subjectgenetic algorithmen
dc.subjectcontrol random search methoden
dc.subjectshape optimizationen
dc.subjectfictitious domain approachesen
dc.titleGenetic and random search methods in optimal shape design problemsen
dc.typearticleen

Files