HyperLoom possibilities for executing scientific workflows on the cloud

dc.contributor.authorCima, Vojtěch
dc.contributor.authorBöhm, Stanislav
dc.contributor.authorMartinovič, Jan
dc.contributor.authorDvorský, Jiří
dc.contributor.authorAshby, Thomas J.
dc.contributor.authorChupakhin, Vladimir
dc.date.accessioned2018-11-30T06:50:30Z
dc.date.available2018-11-30T06:50:30Z
dc.date.issued2018
dc.description.abstractWe have developed HyperLoom - a platform for defining and executing scientific workflows in large-scale HPC systems. The computational tasks in such workflows often have non-trivial dependency patterns, unknown execution time and unknown sizes of generated outputs. HyperLoom enables to efficiently execute the workflows respecting task requirements and cluster resources agnostically to the shape or size of the workflow. Although HPC infrastructures provide an unbeatable performance, they may be unavailable or too expensive especially for small to medium workloads. Moreover, for some workloads, due to HPCs not very flexible resource allocation policy, the system energy efficiency may not be optimal at some stages of the execution. In contrast, current public cloud providers such as Amazon, Google or Exoscale allow users a comfortable and elastic way of deploying, scaling and disposing a virtualized cluster of almost any size. In this paper, we describe HyperLoom virtualization and evaluate its performance in a virtualized environment using workflows of various shapes and sizes. Finally, we discuss the Hyperloom potential for its expansion to cloud environments.cs
dc.description.firstpage397cs
dc.description.lastpage406cs
dc.description.volume611cs
dc.format.extent225706 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationAdvances in Intelligent Systems and Computing. 2018, vol. 611, p. 397-406.cs
dc.identifier.doi10.1007/978-3-319-61566-0_36
dc.identifier.isbn978-3-319-61565-3
dc.identifier.issn2194-5357
dc.identifier.issn2194-5365
dc.identifier.urihttp://hdl.handle.net/10084/133293
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesAdvances in Intelligent Systems and Computingcs
dc.relation.projectideu-repo/grantAgreement/EU/H2020/671555/
dc.relation.projectideu-repo/grantAgreement/MSMT/NPU II/LQ1602/
dc.relation.projectideu-repo/grantAgreement/MSMT/LM2015070
dc.relation.urihttps://doi.org/10.1007/978-3-319-61566-0_36cs
dc.rightsCopyright © 2018, Springer International Publishing AGcs
dc.rights.accessopenAccesscs
dc.subjectcloudcs
dc.subjectvirtualizationcs
dc.subjectdistributed environmentscs
dc.subjectscientific workflowscs
dc.subjectHPCcs
dc.titleHyperLoom possibilities for executing scientific workflows on the cloudcs
dc.typeconference papercs
dc.type.statusPeer-reviewedcs
dc.type.versionsubmittedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
2194-5357-2018v611p397.pdf
Size:
220.42 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections