Scalable FETI with optimal dual penalty for a variational inequality

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorHorák, David
dc.date.accessioned2006-10-11T11:21:41Z
dc.date.available2006-10-11T11:21:41Z
dc.date.issued2004
dc.description.abstractThe FETI method with the natural coarse grid is combined with the penalty method to develop an efficient solver for elliptic variational inequalities. A proof is given that a prescribed bound on the norm of feasibility of solution may be achieved with a value of the penalty parameter that does not depend on the discretization parameter and that an approximate solution with the prescribed bound on violation of the Karush-Kuhn-Tucker conditions may be found in a number of steps that does not depend on the discretization parameter. Results of numerical experiments with parallel solution of a model problem discretized by up to more than eight million of nodal variables are in agreement with the theory and demonstrate numerically both optimality of the penalty and scalability of the algorithm presented.en
dc.identifier.citationNumerical Linear Algebra with Applications. 2004, vol. 11, issues 5-6, p. 455-472.en
dc.identifier.doi10.1002/nla.355
dc.identifier.issn1070-5325
dc.identifier.issn1099-1506
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.urihttp://hdl.handle.net/10084/57038
dc.identifier.wos000222419700004
dc.language.isoenen
dc.publisherWileyen
dc.relation.ispartofseriesNumerical Linear Algebra with Applicationsen
dc.relation.urihttp://dx.doi.org/10.1002/nla.355en
dc.subjectpenaltyen
dc.subjectdomain decompositionen
dc.subjectvariational inequalityen
dc.subjectscalable algorithmsen
dc.subjectparallel programmingen
dc.titleScalable FETI with optimal dual penalty for a variational inequalityen
dc.typearticleen

Files