Despeckling Of Synthetic Aperture Radar Images Using Shearlet Transform
| dc.contributor.author | Garg, Amit | |
| dc.contributor.author | Goel, Anshika | |
| dc.date.accessioned | 2023-10-24T11:43:29Z | |
| dc.date.available | 2023-10-24T11:43:29Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | Synthetic Aperture Radar (SAR) is widely used for producing high quality imaging of Earth sur- face due to its capability of image acquisition in all- weather conditions. However, one limitation of SAR image is that image textures and fine details are usually contaminated with multiplicative granular noise named as speckle noise. This paper presents a speckle reduc- tion technique for SAR images based on statistical mod- elling of detail band shearlet coefficients (SC) in ho- momorphic environment. Modelling of SC correspond- ing to noiseless SAR image are carried out as Nor- mal Inverse Gaussian (NIG) distribution while speckle noise SC are modelled as Gaussian distribution. These SC are segmented as heterogeneous, strongly hetero- geneous and homogeneous regions depending upon the local statistics of images. Then maximum a posteri- ori (MAP) estimation is employed over SC that belong to homogenous and heterogenous region category. The performance of proposed method is compared with seven other methods based on objective and subjective quality measures. PSNR and SSIM metrics are used for objec- tive assessment of synthetic images and ENL metric is used for real SAR images. Subjective assessment is carried out by visualizing denoised images obtained from various methods. The comparative result analy- sis shows that for the proposed method, higher values of PSNR i.e. 26.08 dB, 25.39 dB and 23.82 dB and SSIM i.e. 0.81, 0.69 and 0.61 are obtained for Barbara im- age at noise variances 0.04, 0.1 and 0.15, respectively as compared to other methods. For other images also results obtained for proposed method are at higher side. Also, ENL for real SAR images show highest average value of 125.91 79.05. Hence, the proposed method sig- nifies its potential in comparison to other seven existing image denoising methods in terms of speckle denoising and edge preservation. | cs |
| dc.identifier.citation | Advances in electrical and electronic engineering. 2023, vol. 21, no. 3, p. 245-257 : ill. | cs |
| dc.identifier.doi | 10.15598/aeee.v21i3.4814 | |
| dc.identifier.issn | 1336-1376 | |
| dc.identifier.issn | 1804-3119 | |
| dc.identifier.uri | http://hdl.handle.net/10084/151465 | |
| dc.language.iso | en | cs |
| dc.publisher | Vysoká škola báňská - Technická univerzita Ostrava | cs |
| dc.relation.ispartofseries | Advances in electrical and electronic engineering | cs |
| dc.relation.uri | https://doi.org/10.15598/aeee.v21i3.4814 | cs |
| dc.rights | © Vysoká škola báňská - Technická univerzita Ostrava | |
| dc.rights | Attribution-NoDerivatives 4.0 International | * |
| dc.rights.access | openAccess | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | * |
| dc.subject | NIG | cs |
| dc.subject | shearlet transform | cs |
| dc.subject | speckle noise | cs |
| dc.subject | synthetic aperture radar | cs |
| dc.title | Despeckling Of Synthetic Aperture Radar Images Using Shearlet Transform | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Original bundle
1 - 1 out of 1 results
Loading...
- Name:
- 4814-488497245-4-PB.pdf
- Size:
- 1.1 MB
- Format:
- Adobe Portable Document Format
- Description:
- 4814-488497245-4-PB.pdf
License bundle
1 - 1 out of 1 results
Loading...
- Name:
- license.txt
- Size:
- 718 B
- Format:
- Item-specific license agreed upon to submission
- Description: