Energy Harvesting Enabled Relaying network: Design System and Performance Analysis

Abstract

The thesis deals with the design of new protocols and the analysis of wireless-powered communications networks’ performance. In order to bring the contribution to the science in field of my topic, this thesis starts with the study of wireless power supply policies, namely the separated power (SP) and harvested power (HP) techniques at the relay node in the full-duplex (FD) decode-and-forward (DF) relaying networks (RNs). In the second emphasis, the thesis deals with the factors degrading the system performance, i.e., channel state information (CSI) and hardware impairments (HWIs) using Hybrid time switching-based and power splitting-based relaying (HTPSR) protocol. Besides that, an optimization problem regarding time switching (TS) and power splitting (PS) ratios are solved in this thesis, where a genetic algorithm was used. In the third emphasis of this thesis, a two-way simultaneous wireless information and power transfer (SWIPT) network is considered to be an important technique, in which two new proposed protocols, namely power time splitting-based two-slot (PTSTW) and power time splitting-based three-slot (PTSTH) are deployed and compared with each other. The throughput performance is analyzed for both developed protocols. The following emphasis is the study of relay selection (RS) schemes. The three optimal RS schemes are proposed to examine the system performance, namely: * Half-duplex (HD) deploying maximal ratio combine (HDMRC), * FD deploying joint decoding (FDJD), * and hybrid FD/HD relaying transmission scheme (HTS). All of them operate in two optimal power supply policies - optimal power under the individual power constraints (OPIPC) and optimal power with energy harvesting ability (OPEHA). The simulation results show that the HTS outperforms HDMRC and FDJD, and OPEHA is better than OPIPC. Finally, Optimal time for transmitting power at source (OTPS) and Optimal time for transmitting power at relay (OTPR) are proposed to optimize the transmit power in a cognitive relaying network (CRN). For performance analysis, the outage probability, the rate-energy trade-off and the average energy efficiency are studied to enhance the successful data transmission.

Description

Subject(s)

Energy harvesting, outage probability, ergodic capacity, throughput, energy efficiency.

Citation