Pancomponented 2-factorizations of complete graphs
| dc.contributor.author | Fronček, Dalibor | |
| dc.contributor.author | Stevens, Brett | |
| dc.date.accessioned | 2006-09-26T09:25:58Z | |
| dc.date.available | 2006-09-26T09:25:58Z | |
| dc.date.issued | 2005 | |
| dc.description.abstract | We pose and solve the existence of 2-factorizations of complete graphs and complete bipartite graphs that have the number of cycles per 2-factor varying, called pancomponented. Such 2-factorizations exist for all such graphs. The pancomponented problem requires a slight generalization of the methods used to solve pancyclic 2-factorization problem, by building 2-factors from cyclically generated 1-factors. These two solutions are offered as the basic approaches to constructing the two essential parameters of a 2-factorization: the size and the number of cycles in the 2-factors. | en |
| dc.identifier.citation | Discrete Mathematics. 2005, vol. 299, issues 1-3, p. 99-112. | en |
| dc.identifier.doi | 10.1016/j.disc.2004.09.014 | |
| dc.identifier.issn | 0012-365X | |
| dc.identifier.location | Není ve fondu ÚK | en |
| dc.identifier.uri | http://hdl.handle.net/10084/56566 | |
| dc.identifier.wos | 000232358000009 | |
| dc.language.iso | en | en |
| dc.publisher | North-Holland | en |
| dc.relation.ispartofseries | Discrete Mathematics | en |
| dc.relation.uri | https://doi.org/10.1016/j.disc.2004.09.014 | en |
| dc.subject | Oberwolfach problem | en |
| dc.subject | 2-factorization | en |
| dc.subject | cycle decomposition | en |
| dc.title | Pancomponented 2-factorizations of complete graphs | en |
| dc.type | article | en |