A domain decomposition algorithm for contact problems: Analysis and implementation

dc.contributor.authorHaslinger, Jaroslav
dc.contributor.authorKučera, Radek
dc.contributor.authorSassi, T.
dc.date.accessioned2018-03-26T08:30:49Z
dc.date.available2018-03-26T08:30:49Z
dc.date.issued2009
dc.description.abstractThe paper deals with an iterative method for numerical solving frictionless contact problems for two elastic bodies. Each iterative step consists of a Dirichlet problem for the one body, a contact problem for the other one and two Neumann problems to coordinate contact stresses. Convergence is proved by the Banach fixed point theorem in both continuous and discrete case. Numerical experiments indicate scalability of the algorithm for some choices of the relaxation parameter.cs
dc.description.firstpage123cs
dc.description.issue1cs
dc.description.lastpage146cs
dc.description.sourceWeb of Sciencecs
dc.description.volume4cs
dc.identifier.citationMathematical Modelling of Natural Phenomena. 2009, vol. 4, issue 1, p. 123-146.cs
dc.identifier.doi10.1051/mmnp/20094106
dc.identifier.issn0973-5348
dc.identifier.issn1760-6101
dc.identifier.urihttp://hdl.handle.net/10084/125343
dc.identifier.wos000207834500006
dc.language.isoencs
dc.publisherEDP Sciencescs
dc.relation.ispartofseriesMathematical Modelling of Natural Phenomenacs
dc.relation.urihttps://doi.org/10.1051/mmnp/20094106cs
dc.subjectcontact problemcs
dc.subjectdomain decomposition methodcs
dc.titleA domain decomposition algorithm for contact problems: Analysis and implementationcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: