Taylor series based numerical integration method

dc.contributor.authorVeigend, Petr
dc.contributor.authorNečasová, Gabriela
dc.contributor.authorŠátek, Václav
dc.date.accessioned2021-02-22T10:34:34Z
dc.date.available2021-02-22T10:34:34Z
dc.date.issued2020
dc.description.abstractThis article deals with a high order integration method based on the Taylor series. The paper shows many positive properties of this method on a set of technical initial value problems. These problems can be transformed into the autonomous systems of ordinary differential equations for both linear and nonlinear problems. The MATLAB implementation of the method is compared with state-of-the-art MATLAB solvers.cs
dc.description.firstpage60cs
dc.description.issue1cs
dc.description.lastpage69cs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.identifier.citationOpen Computer Science. 2020, vol. 11, issue 1, p. 60-69.cs
dc.identifier.doi10.1515/comp-2020-0163
dc.identifier.issn2299-1093
dc.identifier.urihttp://hdl.handle.net/10084/142866
dc.identifier.wos000608692900001
dc.language.isoencs
dc.publisherDe Gruytercs
dc.relation.ispartofseriesOpen Computer Sciencecs
dc.relation.urihttp://doi.org/10.1515/comp-2020-0163cs
dc.rights© 2021 P. Veigend et al., published by De Gruyter.cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectordinary differential equationscs
dc.subjectinitial value problemscs
dc.subjectautonomous systemscs
dc.subjectTaylor seriescs
dc.subjectMTSMcs
dc.subjectMATLABcs
dc.titleTaylor series based numerical integration methodcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
2299-1093-2020v11i1p60.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: