On preconditioning and penalized matrices
| dc.contributor.author | Dostál, Zdeněk | |
| dc.date.accessioned | 2007-08-14T11:16:23Z | |
| dc.date.available | 2007-08-14T11:16:23Z | |
| dc.date.issued | 1999 | |
| dc.description | Issue 2 = Special Issue: Czech-US Workshop on Iterative Methods and Parallel Computing | en |
| dc.description.abstract-en | An alternative approach to the preconditioning of a system of linear equations with a matrix A + rho (CC)-C-T that is the sum of a positive definite matrix A and a penalization term is proposed. After showing that there is a gap in the spectrum of A + rho (CC)-C-T provided is sufficiently large, a preconditioner for A is applied to A + rho (CC)-C-T in such a way that it preserves the gap in the spectrum but still improves the convergence of the conjugate gradient method. A bound on the rate of convergence of the conjugate gradient method with our preconditioning based on the estimates by Axelsson is given that depends neither on nor on the rank of C. Numerical experiments confirm the efficiency of the approach presented. | en |
| dc.identifier.citation | Numerical Linear Algebra with Applications. 1999, vol. 6, issue 2, p. 109-114. | en |
| dc.identifier.doi | 10.1002/(SICI)1099-1506(199903)6:2<109::AID-NLA150>3.0.CO;2-0 | |
| dc.identifier.issn | 1070-5325 | |
| dc.identifier.issn | 1099-1506 | |
| dc.identifier.location | Není ve fondu ÚK | en |
| dc.identifier.uri | http://hdl.handle.net/10084/61832 | |
| dc.identifier.wos | 000081574000003 | |
| dc.language.iso | en | en |
| dc.publisher | Wiley | en |
| dc.relation.ispartofseries | Numerical Linear Algebra with Applications | en |
| dc.relation.uri | http://dx.doi.org/10.1002/(SICI)1099-1506(199903)6:2<109::AID-NLA150>3.0.CO;2-0 | en |
| dc.subject | penalized matrices | en |
| dc.subject | preconditioning | en |
| dc.subject | augmented Lagrangians | en |
| dc.title | On preconditioning and penalized matrices | en |
| dc.type | article | en |