Gaussian Process Regression

dc.contributor.advisorKracík, Jan
dc.contributor.authorPham, Thy Châu Anh
dc.contributor.refereeDomesová, Simona
dc.date.accepted2019-05-29
dc.date.accessioned2019-06-26T04:29:46Z
dc.date.available2019-06-26T04:29:46Z
dc.date.issued2019
dc.description.abstractIn the Bayesian approach, the data are supplemented with additional information in the form of a prior probability distribution. The prior belief about the parameters is combined with the data's likelihood function according to Bayes theorem to yield the posterior belief about the parameters. We presenting some important issues about Bayesian statistics, multivariate normal distribution and linear model. Then the posterior and posterior predictive distribution for linear regression model is derived. Some visual examples about the Bayesian linear model are also presented. Finally, the connection between standard Bayesian treatment of linear models and Gaussian process regression is discussed.en
dc.description.abstractIn the Bayesian approach, the data are supplemented with additional information in the form of a prior probability distribution. The prior belief about the parameters is combined with the data's likelihood function according to Bayes theorem to yield the posterior belief about the parameters. We presenting some important issues about Bayesian statistics, multivariate normal distribution and linear model. Then the posterior and posterior predictive distribution for linear regression model is derived. Some visual examples about the Bayesian linear model are also presented. Finally, the connection between standard Bayesian treatment of linear models and Gaussian process regression is discussed.cs
dc.description.department470 - Katedra aplikované matematikycs
dc.description.resultdobřecs
dc.format.extent2194731 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.otherOSD002
dc.identifier.senderS2724
dc.identifier.thesisPHA0035_FEI_N2647_1103T031_2019
dc.identifier.urihttp://hdl.handle.net/10084/136103
dc.language.isoen
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.rights.accessopenAccess
dc.subject{Bayesian statistic, Gaussian process, multivariate normal distribution, linear regresssionen
dc.subject{Bayesian statistic, Gaussian process, multivariate normal distribution, linear regresssioncs
dc.thesis.degree-branchVýpočetní matematikacs
dc.thesis.degree-grantorVysoká škola báňská - Technická univerzita Ostrava. Fakulta elektrotechniky a informatikycs
dc.thesis.degree-levelMagisterský studijní programcs
dc.thesis.degree-nameIng.
dc.thesis.degree-programInformační a komunikační technologiecs
dc.titleGaussian Process Regressionen
dc.title.alternativeRegresní modely s gaussovskými procesycs
dc.typeDiplomová prácecs

Files

Original bundle

Now showing 1 - 3 out of 3 results
Loading...
Thumbnail Image
Name:
PHA0035_FEI_N2647_1103T031_2019.pdf
Size:
2.09 MB
Format:
Adobe Portable Document Format
Description:
Text práce
Loading...
Thumbnail Image
Name:
PHA0035_FEI_N2647_1103T031_2019_posudek_vedouci_Kracik_Jan.pdf
Size:
47.82 KB
Format:
Adobe Portable Document Format
Description:
Posudek vedoucího – Kracík, Jan
Loading...
Thumbnail Image
Name:
PHA0035_FEI_N2647_1103T031_2019_posudek_oponent_Domesova_Simona.pdf
Size:
51.69 KB
Format:
Adobe Portable Document Format
Description:
Posudek oponenta – Domesová, Simona