An adaptive WEM algorithm for solving elliptic boundary value problems in fairly general domains

dc.contributor.authorBerrone, S.
dc.contributor.authorKozubek, Tomáš
dc.date.accessioned2007-03-08T11:44:49Z
dc.date.available2007-03-08T11:44:49Z
dc.date.issued2006
dc.description.abstract-enIn this paper, we introduce a simple adaptive wavelet element algorithm similar to the Cohen–Dahmen–DeVore algorithm [A. Cohen, W. Dahmen, and R. DeVore, Math. Comp., 70 (2001), pp. 27–75]. The main difference is that we do not assume knowledge of the many constants appearing therein. The algorithm is easy to implement and applicable to a large class of problems in fairly general domains. The efficiency is illustrated by several two-dimensional numerical examples and compared with an adaptive finite element method.en
dc.identifier.citationSIAM Journal on Scientific Computing. 2006, vol. 28, issue 6, p. 2114-2138.en
dc.identifier.doi10.1137/04062014X
dc.identifier.issn1064-8275
dc.identifier.issn1095-7197
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.urihttp://hdl.handle.net/10084/59850
dc.identifier.wos000243968200006
dc.language.isoenen
dc.publisherSociety for Industrial and Applied Mathematicsen
dc.relation.ispartofseriesSIAM Journal on Scientific Computingen
dc.relation.urihttps://doi.org/10.1137/04062014Xen
dc.subjectadaptive wavelet and finite element methodsen
dc.subjectelliptic operator equationsen
dc.subjectrates of convergenceen
dc.titleAn adaptive WEM algorithm for solving elliptic boundary value problems in fairly general domainsen
dc.typearticleen

Files