Differential evolution dynamics modeled by longitudinal social network

dc.contributor.authorSkanderová, Lenka
dc.contributor.authorFabián, Tomáš
dc.contributor.authorZelinka, Ivan
dc.date.accessioned2017-12-01T12:05:49Z
dc.date.available2017-12-01T12:05:49Z
dc.date.issued2017
dc.description.abstractDifferential evolution (DE) is a population-based algorithm using Darwinian and Mendel principles to find out an optimal solution to difficult problems. In this work, the dynamics of the DE algorithm are modeled by using a longitudinal social network. Because a population of the DE algorithm is improved in generations, each generation of DE algorithm is represented by one short-interval network. Each short-interval network is created by individuals contributing to population improvement. On the basis of this model, a new parent selection in the mutation operation is presented and a well-known benchmark set CEC 2013 Special Session on Real-Parameter Optimization (including 28 functions) is used to evaluate the performance of the proposed algorithm.cs
dc.description.firstpage523cs
dc.description.issue3cs
dc.description.lastpage529cs
dc.description.sourceWeb of Sciencecs
dc.description.volume26cs
dc.identifier.citationJournal of Intelligent Systems. 2017, vol. 26, issue 3, p. 523-529.cs
dc.identifier.doi10.1515/jisys-2015-0140
dc.identifier.issn0334-1860
dc.identifier.issn2191-026X
dc.identifier.urihttp://hdl.handle.net/10084/122141
dc.identifier.wos000415637900009
dc.language.isoencs
dc.publisherDe Gruytercs
dc.relation.ispartofseriesJournal of Intelligent Systemscs
dc.relation.urihttps://doi.org/10.1515/jisys-2015-0140cs
dc.rights©2017 Walter de Gruyter GmbH, Berlin/Boston.cs
dc.subjectdifferential evolution dynamicscs
dc.subjectlongitudinal social networkcs
dc.subjectdegree centralitycs
dc.titleDifferential evolution dynamics modeled by longitudinal social networkcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: