Risk assessment of VAT entities using selected data mining models

dc.contributor.authorCút, Stanislav
dc.date.accessioned2016-06-29T06:29:16Z
dc.date.available2016-06-29T06:29:16Z
dc.date.issued2015
dc.description.abstractThe goal of the paper was to evaluate the classification ability of selected types of data mining methods, focusing on neural networks, decision trees and random forests, within the risk assessment of VAT entities. The data set used for the testing contained information on the risk of taxpayers who were obliged to file VAT returns in the calendar year 2012. The highest classification ability among the constructed models was achieved by the multilayer perceptron model. The lowest classification ability was demonstrated by the decision tree method, using the default growth exhaustive CHAID algorithm.cs
dc.format.extent391338 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationEkonomická revue. 2015, roč. 18, č. 1, s. 5-14 : il.cs
dc.identifier.issn1212-3951
dc.identifier.urihttp://hdl.handle.net/10084/111766
dc.language.isoen
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesEkonomická revuecs
dc.relation.urihttp://www.ekf.vsb.cz/export/sites/ekf/cerei/cs/cisla/vol18num1/dokumenty/VOL18NUM01PAP01.pdf
dc.rights© Vysoká škola báňská - Technická univerzita Ostravacs
dc.rights.accessopenAccess
dc.subjectdata-mining methodsen
dc.subjectneural networksen
dc.subjectdecision treesen
dc.subjectrandom forestsen
dc.subjectclassification analysisen
dc.subjectVATen
dc.titleRisk assessment of VAT entities using selected data mining modelsen
dc.typearticle
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
VOL18NUM01PAP01.pdf
Size:
382.17 KB
Format:
Adobe Portable Document Format
Description:
publishedVersion

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: