Non-Orthogonal Multiple Access schemes for Next Generation Cellular Networks: System Model and Performance Consideration

Abstract

The dissertation deals with next generation cellular networks, especially in regard to the integration of wireless networks which apply non-orthogonal multiple access (NOMA) and other advanced techniques such as multi-antennae, radio frequency energy harvesting (EH), physical layer security (PLS) and satellite communication. Firstly, the dissertation investigates a multi-antenna transmission model to enhance the performance of communications. A novel model of power distribution to NOMA users, who joined both direct link and relay link, is designed to improve transmission quality. Further, we deploy the power beacon, which is able to feed energy to power-constraint relay node to further support transmission to destinations. Secondly, the dissertation studies the secrecy performance of a PLS in cognitive radio (CR)-NOMA networks. The multi-input single-output (MISO) architecture combining transmit antenna selection (TAS) strategy is considered to achieve secure performance analysis such as the secrecy outage probability (SOP). Further, optimal power allocation (PA) factor can be obtained to optimize SOP performance. Since the presence of an illegitimate user, we improve the SOP by adopting relay selection (RS) combining decode-and-forward (DF) with full-duplex (FD)relaying. Finally, as the strongest contribution of the dissertation, an application of the NOMA technique, which improves the spectral efficiency, in satellite networks is introduced. Satellite communication systems integrate with emerging small-cell networks to provide seamless connectivity and high-speed broadband access for mobile users in future wireless networks. In the dissertation, we study a hybrid satellite-terrestrial relay system (HSTRS). To characterizing the HSTRS-assisted small-cell network, Shadowed-Rician fading for satellite links and Nakagami-m fading for terrestrial links are adopted.

Description

Subject(s)

NOMA, MISO, EH, HSTRS, next generation cellular networks.

Citation