Range of diameters of complementary factors of almost complete tripartite graphs
| dc.contributor.author | Fronček, Dalibor | |
| dc.date.accessioned | 2006-11-10T07:17:38Z | |
| dc.date.available | 2006-11-10T07:17:38Z | |
| dc.date.issued | 2000 | |
| dc.description.abstract-en | A complete tripartite graph without one edge, (K) over tilde(m1),(m2),(m3), is called almost complete tripartite graph. A graph (K) over tilde(m1),(m2),(m3) that can be decomposed into two isomorphic factors with a given diameter d is called d-halvable. We prove that (K) over tilde(m1,m2,m3) is d-halvable for a finite d only if d less than or equal to 5. | en |
| dc.identifier.citation | Utilitas Mathematica. 2000, vol. 57, p. 211–225. | en |
| dc.identifier.issn | 0315-3681 | |
| dc.identifier.location | Není ve fondu ÚK | en |
| dc.identifier.uri | http://hdl.handle.net/10084/58039 | |
| dc.identifier.wos | 000087251900016 | |
| dc.language.iso | en | en |
| dc.publisher | Utilitas Mathematica | en |
| dc.relation.ispartofseries | Utilitas Mathematica | en |
| dc.subject | graph decompositions | en |
| dc.subject | isomorphic factors | en |
| dc.subject | self-complementary graphs | en |
| dc.title | Range of diameters of complementary factors of almost complete tripartite graphs | en |
| dc.type | article | en |