Range of diameters of complementary factors of almost complete tripartite graphs

dc.contributor.authorFronček, Dalibor
dc.date.accessioned2006-11-10T07:17:38Z
dc.date.available2006-11-10T07:17:38Z
dc.date.issued2000
dc.description.abstract-enA complete tripartite graph without one edge, (K) over tilde(m1),(m2),(m3), is called almost complete tripartite graph. A graph (K) over tilde(m1),(m2),(m3) that can be decomposed into two isomorphic factors with a given diameter d is called d-halvable. We prove that (K) over tilde(m1,m2,m3) is d-halvable for a finite d only if d less than or equal to 5.en
dc.identifier.citationUtilitas Mathematica. 2000, vol. 57, p. 211–225.en
dc.identifier.issn0315-3681
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.urihttp://hdl.handle.net/10084/58039
dc.identifier.wos000087251900016
dc.language.isoenen
dc.publisherUtilitas Mathematicaen
dc.relation.ispartofseriesUtilitas Mathematicaen
dc.subjectgraph decompositionsen
dc.subjectisomorphic factorsen
dc.subjectself-complementary graphsen
dc.titleRange of diameters of complementary factors of almost complete tripartite graphsen
dc.typearticleen

Files