Self-complementary factors of almost complete tripartite graphs of even order
| dc.contributor.author | Fronček, Dalibor | |
| dc.date.accessioned | 2006-11-07T15:32:03Z | |
| dc.date.available | 2006-11-07T15:32:03Z | |
| dc.date.issued | 2001 | |
| dc.description.abstract-en | A complete tripartite graph without one edge, (K) over tilde (m1,m2,m3), is called almost complete tripartite graph. A graph (K) over tilde (m1),(m2),(m3) that can be decomposed into two isomorphic factors with a given diameter d is called d-halvable. We prove that (K) over tilde (m1,m2,m3) is d-halvable for a finite d only if d less than or equal to 5 and completely determine all triples 2m ' (1) + 1, 2m ' (2) +1, 2m ' (3) for which there exist d-halvable almost complete tripartite graphs for diameters 3,4 and 5, respectively. | en |
| dc.identifier.citation | Discrete Mathematics. 2001, vol. 236, issue 1-3, p. 111-122. | en |
| dc.identifier.doi | 10.1016/S0012-365X(00)00435-0 | |
| dc.identifier.issn | 0012-365X | |
| dc.identifier.location | Není ve fondu ÚK | en |
| dc.identifier.uri | http://hdl.handle.net/10084/57889 | |
| dc.identifier.wos | 000169118900011 | |
| dc.language.iso | en | en |
| dc.publisher | North-Holland | en |
| dc.relation.ispartofseries | Discrete Mathematics | en |
| dc.relation.uri | https://doi.org/10.1016/S0012-365X(00)00435-0 | en |
| dc.subject | graph decompositions | en |
| dc.subject | isomorphic factors | en |
| dc.subject | self-complementary graphs | en |
| dc.title | Self-complementary factors of almost complete tripartite graphs of even order | en |
| dc.type | article | en |