Self-complementary factors of almost complete tripartite graphs of even order

dc.contributor.authorFronček, Dalibor
dc.date.accessioned2006-11-07T15:32:03Z
dc.date.available2006-11-07T15:32:03Z
dc.date.issued2001
dc.description.abstract-enA complete tripartite graph without one edge, (K) over tilde (m1,m2,m3), is called almost complete tripartite graph. A graph (K) over tilde (m1),(m2),(m3) that can be decomposed into two isomorphic factors with a given diameter d is called d-halvable. We prove that (K) over tilde (m1,m2,m3) is d-halvable for a finite d only if d less than or equal to 5 and completely determine all triples 2m ' (1) + 1, 2m ' (2) +1, 2m ' (3) for which there exist d-halvable almost complete tripartite graphs for diameters 3,4 and 5, respectively.en
dc.identifier.citationDiscrete Mathematics. 2001, vol. 236, issue 1-3, p. 111-122.en
dc.identifier.doi10.1016/S0012-365X(00)00435-0
dc.identifier.issn0012-365X
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.urihttp://hdl.handle.net/10084/57889
dc.identifier.wos000169118900011
dc.language.isoenen
dc.publisherNorth-Hollanden
dc.relation.ispartofseriesDiscrete Mathematicsen
dc.relation.urihttps://doi.org/10.1016/S0012-365X(00)00435-0en
dc.subjectgraph decompositionsen
dc.subjectisomorphic factorsen
dc.subjectself-complementary graphsen
dc.titleSelf-complementary factors of almost complete tripartite graphs of even orderen
dc.typearticleen

Files