Encapsulation of FBG sensor into the PDMS and its effect on spectral and temperature characteristics

dc.contributor.authorNedoma, Jan
dc.contributor.authorFajkus, Marcel
dc.contributor.authorBednárek, Lukáš
dc.contributor.authorFrnda, Jaroslav
dc.contributor.authorZavadil, Jan
dc.contributor.authorVašinek, Vladimír
dc.date.accessioned2017-10-31T09:24:57Z
dc.date.available2017-10-31T09:24:57Z
dc.date.issued2016
dc.description.abstractFiber Bragg Grating (FBG) is the most distributed type of fiber-optic sensors. FBGs are primarily sensitive to the effects of temperature and deformation. By employing different transformation techniques, it is possible to use FBG to monitor any physical quantity. To use them as parts of sensor applications, it is essential to encapsulate FBGs to achieve their maximum protection against external effects and damage. Another reason to encapsulate is increasing of sensitivity to the measured quantity. Polydimethylsiloxane (PDMS) encapsulation appears to be an interesting alternative due to convenient temperature and flexibility of the elastomer. This article describes an experimental proposal of FBG PDMS encapsulation process, also providing an analysis of the FBG spectral characteristics and temperature sensitivity, both influenced by high temperature and the process of polydimethylsiloxane curing itself. As for the PDMS type, Sylgard 184 was employed. Encapsulation consisted of several steps: allocation of FBG to PDMS in its liquid state, curing PDMS at the temperature of 80°C ± 5 %, and a 50-minute relaxation necessary to stabilize a Bragg wavelength. A broadband light source and an optical spectrum analyzer were both used to monitor the parameters during the processes of curing and relaxation. Presented results imply that such a method of encapsulation does not have any influence on the structure or functionality of the FBG. At the same time, a fourfold increase of temperature sensitivity was monitored when compared to a bare FBG.cs
dc.format.extent2727542 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationAdvances in electrical and electronic engineering. 2016, vol. 14, no. 4, p. 460-466cs
dc.identifier.doi10.15598/aeee.v14i4.1786
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/120999
dc.identifier.wos000409035800015
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v14i4.1786cs
dc.rights.accessopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectencapsulatedcs
dc.subjectfiber Brag gratingcs
dc.subjectpolydimethylsiloxanecs
dc.subjectspectral characteristiccs
dc.subjecttemperaturecs
dc.titleEncapsulation of FBG sensor into the PDMS and its effect on spectral and temperature characteristicscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
1786-10413-1-PB.pdf
Size:
2.6 MB
Format:
Adobe Portable Document Format
Description:
publishedVersion

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: