Risk Estimation and Backtesting

dc.contributor.advisorKresta, Aleš
dc.contributor.authorLi, Yuling
dc.contributor.refereeNovotný, Josef
dc.date.accepted2018-05-29
dc.date.accessioned2018-06-26T08:01:33Z
dc.date.available2018-06-26T08:01:33Z
dc.date.issued2018
dc.description.abstractThe financial market always fluctuates. The most popular risk measures is Value of Risk. We introduce the four methods for VaR estimation.They are historical simulation method, filtered historical simulation, analytical solution and Monte Carlo method. In order to verify the different VaR estimation approaches, we utilize backtesting on chosen time series, which are Kupiec's unconditional coverage test and Christoffersen's conditional coverage test. In order to show the calculation steps of VaR estimation and backtesting procedures clearly, we present simplified examples in the beginning of each empirical study. Then the VaR estimation is calculated with different probability levels based on different observed periods. In the end, we find out the most accuracy model on chosen time series.en
dc.description.abstractThe financial market always fluctuates. The most popular risk measures is Value of Risk. We introduce the four methods for VaR estimation.They are historical simulation method, filtered historical simulation, analytical solution and Monte Carlo method. In order to verify the different VaR estimation approaches, we utilize backtesting on chosen time series, which are Kupiec's unconditional coverage test and Christoffersen's conditional coverage test. In order to show the calculation steps of VaR estimation and backtesting procedures clearly, we present simplified examples in the beginning of each empirical study. Then the VaR estimation is calculated with different probability levels based on different observed periods. In the end, we find out the most accuracy model on chosen time series.cs
dc.description.department154 - Katedra financícs
dc.description.resultvýborněcs
dc.format.extent3332480 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.otherOSD002
dc.identifier.senderS2751
dc.identifier.thesisLIY0011_EKF_N6202_6202T010_2018
dc.identifier.urihttp://hdl.handle.net/10084/127524
dc.language.isoen
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.rights.accessopenAccess
dc.subjectmarket risken
dc.subjectrisk measureen
dc.subjectValue of Risken
dc.subjectnon-parametric methoden
dc.subjectanalytical solutionen
dc.subjectnormal distributionen
dc.subjectStudent's t-distributionen
dc.subjectMonte Carloen
dc.subjectbacktestingen
dc.subjectKupiec's testen
dc.subjectChristoffersen's testen
dc.subjectempirical studyen
dc.subjectmarket riskcs
dc.subjectrisk measurecs
dc.subjectValue of Riskcs
dc.subjectnon-parametric methodcs
dc.subjectanalytical solutioncs
dc.subjectnormal distributioncs
dc.subjectStudent's t-distributioncs
dc.subjectMonte Carlocs
dc.subjectbacktestingcs
dc.subjectKupiec's testcs
dc.subjectChristoffersen's testcs
dc.subjectempirical studycs
dc.thesis.degree-branchFinancecs
dc.thesis.degree-grantorVysoká škola báňská - Technická univerzita Ostrava. Ekonomická fakultacs
dc.thesis.degree-levelMagisterský studijní programcs
dc.thesis.degree-nameIng.
dc.thesis.degree-programHospodářská politika a správacs
dc.titleRisk Estimation and Backtestingen
dc.title.alternativeOdhad rizika a zpětné testovánícs
dc.typeDiplomová prácecs

Files

Original bundle

Now showing 1 - 3 out of 3 results
Loading...
Thumbnail Image
Name:
LIY0011_EKF_N6202_6202T010_2018.pdf
Size:
3.18 MB
Format:
Adobe Portable Document Format
Description:
Text práce
Loading...
Thumbnail Image
Name:
LIY0011_EKF_N6202_6202T010_2018_posudek_vedouci_Kresta_Ales.pdf
Size:
647.82 KB
Format:
Adobe Portable Document Format
Description:
Posudek vedoucího – Kresta, Aleš
Loading...
Thumbnail Image
Name:
LIY0011_EKF_N6202_6202T010_2018_posudek_oponent_Novotny_Josef.pdf
Size:
285.1 KB
Format:
Adobe Portable Document Format
Description:
Posudek oponenta – Novotný, Josef