Risk Estimation and Backtesting
| dc.contributor.advisor | Kresta, Aleš | |
| dc.contributor.author | Li, Yuling | |
| dc.contributor.referee | Novotný, Josef | |
| dc.date.accepted | 2018-05-29 | |
| dc.date.accessioned | 2018-06-26T08:01:33Z | |
| dc.date.available | 2018-06-26T08:01:33Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract | The financial market always fluctuates. The most popular risk measures is Value of Risk. We introduce the four methods for VaR estimation.They are historical simulation method, filtered historical simulation, analytical solution and Monte Carlo method. In order to verify the different VaR estimation approaches, we utilize backtesting on chosen time series, which are Kupiec's unconditional coverage test and Christoffersen's conditional coverage test. In order to show the calculation steps of VaR estimation and backtesting procedures clearly, we present simplified examples in the beginning of each empirical study. Then the VaR estimation is calculated with different probability levels based on different observed periods. In the end, we find out the most accuracy model on chosen time series. | en |
| dc.description.abstract | The financial market always fluctuates. The most popular risk measures is Value of Risk. We introduce the four methods for VaR estimation.They are historical simulation method, filtered historical simulation, analytical solution and Monte Carlo method. In order to verify the different VaR estimation approaches, we utilize backtesting on chosen time series, which are Kupiec's unconditional coverage test and Christoffersen's conditional coverage test. In order to show the calculation steps of VaR estimation and backtesting procedures clearly, we present simplified examples in the beginning of each empirical study. Then the VaR estimation is calculated with different probability levels based on different observed periods. In the end, we find out the most accuracy model on chosen time series. | cs |
| dc.description.department | 154 - Katedra financí | cs |
| dc.description.result | výborně | cs |
| dc.format.extent | 3332480 bytes | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.other | OSD002 | |
| dc.identifier.sender | S2751 | |
| dc.identifier.thesis | LIY0011_EKF_N6202_6202T010_2018 | |
| dc.identifier.uri | http://hdl.handle.net/10084/127524 | |
| dc.language.iso | en | |
| dc.publisher | Vysoká škola báňská - Technická univerzita Ostrava | cs |
| dc.rights.access | openAccess | |
| dc.subject | market risk | en |
| dc.subject | risk measure | en |
| dc.subject | Value of Risk | en |
| dc.subject | non-parametric method | en |
| dc.subject | analytical solution | en |
| dc.subject | normal distribution | en |
| dc.subject | Student's t-distribution | en |
| dc.subject | Monte Carlo | en |
| dc.subject | backtesting | en |
| dc.subject | Kupiec's test | en |
| dc.subject | Christoffersen's test | en |
| dc.subject | empirical study | en |
| dc.subject | market risk | cs |
| dc.subject | risk measure | cs |
| dc.subject | Value of Risk | cs |
| dc.subject | non-parametric method | cs |
| dc.subject | analytical solution | cs |
| dc.subject | normal distribution | cs |
| dc.subject | Student's t-distribution | cs |
| dc.subject | Monte Carlo | cs |
| dc.subject | backtesting | cs |
| dc.subject | Kupiec's test | cs |
| dc.subject | Christoffersen's test | cs |
| dc.subject | empirical study | cs |
| dc.thesis.degree-branch | Finance | cs |
| dc.thesis.degree-grantor | Vysoká škola báňská - Technická univerzita Ostrava. Ekonomická fakulta | cs |
| dc.thesis.degree-level | Magisterský studijní program | cs |
| dc.thesis.degree-name | Ing. | |
| dc.thesis.degree-program | Hospodářská politika a správa | cs |
| dc.title | Risk Estimation and Backtesting | en |
| dc.title.alternative | Odhad rizika a zpětné testování | cs |
| dc.type | Diplomová práce | cs |
Files
Original bundle
1 - 3 out of 3 results
Loading...
- Name:
- LIY0011_EKF_N6202_6202T010_2018.pdf
- Size:
- 3.18 MB
- Format:
- Adobe Portable Document Format
- Description:
- Text práce
Loading...
- Name:
- LIY0011_EKF_N6202_6202T010_2018_posudek_vedouci_Kresta_Ales.pdf
- Size:
- 647.82 KB
- Format:
- Adobe Portable Document Format
- Description:
- Posudek vedoucího – Kresta, Aleš
Loading...
- Name:
- LIY0011_EKF_N6202_6202T010_2018_posudek_oponent_Novotny_Josef.pdf
- Size:
- 285.1 KB
- Format:
- Adobe Portable Document Format
- Description:
- Posudek oponenta – Novotný, Josef