The influence of gestation age on the performance of adaptive algorithms used for fetal ECG signal extraction
Loading...
Downloads
4
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoká škola báňská - Technická univerzita Ostrava
Location
Signature
License
Abstract
The main aims of this paper are to study the influence of the Gestation Age (GA) on the quality of recorded abdominal ECG (aECG) signals and to evaluate the performance of the LMS and RLS adaptive signal processing algorithms in the extraction of the fetal ECG (fECG) signal component from such signals. This influence is quantified as a function of the Signal-to-Noise Ratio (SNR). Our research shows that these adaptive algorithms with optimized settings can successfully be applied to extract fECG signals from the maternal aECG signals as early as the 30th week of GA, hence addressing a limitation (37 weeks or labor) in commercially available monitoring systems. We demonstrate that before this gestational age, the SNR of the maternal aECG signal is too low for these adaptive algorithms to work effectively and produce satisfactory results.
Description
Subject(s)
ECG extraction, fetal ElectroCardioGram (ECG), gestation age, LMS and RLS algorithms, non-invasive fetal monitoring
Citation
Advances in electrical and electronic engineering. 2017, vol. 15, no. 3, p. 491-501
Item identifier
Collections
AEEE. 2017, vol. 15
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Publikační činnost Katedry telekomunikačních technologií / Publications of Department of Telecommunications (440)
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Publikační činnost Katedry telekomunikačních technologií / Publications of Department of Telecommunications (440)
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science