Projector preconditioning for partially bound-constrained quadratic optimization

dc.contributor.authorDomorádová, Marta
dc.contributor.authorDostál, Zdeněk
dc.date.accessioned2008-01-28T08:14:43Z
dc.date.available2008-01-28T08:14:43Z
dc.date.issued2007
dc.description.abstractPreconditioning by a conjugate projector is combined with the recently proposed modified proportioning with reduced gradient projection (MPRGP) algorithm for the solution of bound-constrained quadratic programming problems. If applied to the partially bound-constrained problems, such as those arising from the application of FETI-based domain decomposition methods to the discretized elliptic boundary variational inequalities, the resulting algorithm is shown to have better bound on the rate of convergence than the original MPRGP algorithm. The performance of the algorithm is illustrated on the solution of a model boundary variational inequality.en
dc.identifier.citationNumerical Linear Algebra with Applications. 2007, vol. 14, issue 10 , p. 791-806.en
dc.identifier.doi10.1002/nla.555
dc.identifier.issn1070-5325
dc.identifier.issn1099-1506
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.urihttp://hdl.handle.net/10084/64716
dc.identifier.wos000251861300003
dc.language.isoenen
dc.publisherWileyen
dc.relation.ispartofseriesNumerical Linear Algebra with Applicationsen
dc.relation.urihttp://dx.doi.org/10.1002/nla.555en
dc.subjectquadratic programmingen
dc.subjectbound constraintsen
dc.subjectboundary variational inequalitiesen
dc.subjectpreconditioningen
dc.titleProjector preconditioning for partially bound-constrained quadratic optimizationen
dc.typearticleen

Files